Vapor Thermal Expansion

Vapor Therma	l Expa	nsion							
Equipment Data:									
Equipment Tag Num	der:	EqTag			Equipmer	r:Type:	EqType		-
Drawing:		Drawing		-	MAWP:		MAWP	psig	1
Description		Description	ı		MAWT:		MAWT	F	
cenario Input Da	ta;								
perating Heat Inpu	C	· · ·	put MMBtu/hr		LMTD:Ope		LMTDop	F	_
leat Input Basis:		HeatInputB					LMTDrelief		
Operating Pressure:		· · ·	Pop Psig		Heatinpu		Hrelief		su/hr
Operating Temperat			pin F			efTemperatura:	<u> </u>	F	4
Delta T for Expansion	•	Del	taT Fiii			ef Density:	rho1	15/ft	
orrect:LMTD:			<u> </u>		Initial Rel		Cp1	Btu/	b/F
iot in Temperature:		Hot	(Tin F		Cubical D	pansion Factor:	Beta	1/5	
ot Out Temperatur	•	HotT	out F		Required	Mass Rate:	iiredRateMass	lb/h	
equired Relief Rate	Units	RateUnit	-		Required	Std.:Vol.:Rate:	quiredRateMM	MMS	CFD
et:Prassure:		S	etP psig		Required	Air:Rate:	quiredRateAir	scfh	air
llowable:Overpress	ura:	Ov	erP		ReliefMa	ss:Flux:	Flux2	lb/s	sc/ft2
evice Outlet Press	ire:		P3 psig						
seTharmo									
hərmodynamic Pac	kage		ThermoPacka	ge 🗸 🗄					
treamID		······							
			~						
Open Stream Ne	w Stream								
elief Device Kd:			Kd						
izing:	Sizing								
Outlet:Plpa Sizing:	OutPipeS	Sizing	V						
		Calculate	Preview	ä	Print	Close			

Equipment Data:

The six fields under Equipment Data are specified on the Overpressure Scenario Form.

Input Data:

The form fields for inputs are blue and organized under the Scenario Input column. These are described below:

HeatInput – Maximum heat input to system at operating conditions.

HeatInputBasis – Basis for heat input such as 110% of design duty, design duty or normal operating.

Pop – Operating pressure used to quantify initial density and initial relief temperature. Higher value results in higher density and lower initial relief temperature.

TopIn – Higher value results in lower density and higher initial relief temperature.

DeltaT – Temperature increase above initial relief temperature used in expansion calculation.

Correct LMTD – If yes, TopIn, HotIn and HotOut temperatures are used to determine a reduced LMTD and heat input at the relief pressure and temperature.

HotIn - Operating inlet temperature for hot side - only required for Correct LMTD

HotOut – Operating outlet temperature for hot side - only required for Correct LMTD

RateUnit – Flow units in which the required relief rate will be reported.

SetP – Set pressure that will be used along with overpressure to determine relief pressure.

OverP – Allowable overpressure typically 21% used to determine relief pressure.

P3 – Constant back pressure when PSV is closed.

Use Thermodynamics - If false, additional property inputs are required.

ThermoPackage – Thermo package used for properties. VMG (Symmetry) packages or REFPROP 10.0 from NIST

StreamID – The vapor stream contained in the vessel. A new stream can be added here. See <u>Stream</u> <u>Definition Form</u>.

Kd – Manufacturer's certified vapor Kd or 0.975 for API STD 520 default.

Sizing – PSV sizing method: API 520 Vapor or Numerical Integration (recommended when Z <= 0.8).

OutPipeSizing – Outlet pressure drop method: Adiabatic, Omega Method or Numerical Integration.

Calculation Method:

The calculation method for vapor expansion is similar to the liquid thermal expansion method utilizing the cubical expansion coefficient (α_v) determined as follows:

 $\alpha_v = \frac{rho1^2 - rho2^2}{2(T2 - T1) x rho1 x rho2}$

The heat input is generally the design duty or design duty plus some percentage over design. This operating heat input can be corrected for relief conditions using the operating and reduced LMTDs using the following formulae.

$$LMTD_{op} = \frac{\left[(HotTin - TopIn) - (HotTout - TopIn)\right]}{\log\left[\frac{(HotTin - TopIn)}{(HotTOut - TopIn)}\right]}$$
$$LMTD_{relief} = \frac{\left[(HotTin - T2) - (HotTout - T2)\right]}{\log\left[\frac{(HotTin - T2)}{(HotTOut - T2)}\right]}$$
$$Hrelief = HeatInput \ x \ \frac{LMTD_{relief}}{LMTD_{op}}$$

$$q_{relief} = \frac{Hrelief \ x \ \alpha_{v}}{Cp^2}$$

 q_{relief} is the required mass relief rate (lb/hr)

Cp2 is the mass specific heat at relief conditions (Btu/lb/°F)

Scenario Output Data:

The form fields for scenario-specific outputs are organized under the Scenario Output column. These are described below:

LMTDop - LMTD at operating conditions associated with HeatInput in °F

LMTDRelief - LMTD at relief conditions in °F

Hrelief - Heat input at relief conditions in Btu/hr accounting for reduced LMTD if specified

T1 – Temperature at initial relief conditions (start conditions for expansion)

Rho1 – Density in lb/ft³ at initial relief conditions (start conditions for expansion)

Cp1 – Mass heat capacity in Btu/lb/°F at initial relief conditions (start conditions for expansion)

Beta - Cubical expansion coefficient at initial relief conditions 1/°F

RequiredRateMass - Required rate in lb/hr

RequiredRateMM - Required rate in MMSCFD

RequiredRateAir - Required rate converted to scfh air

Flux2 - RequiredRateMass · RequiredArea * 144 / 3600

Scenario Calculation Results:

The form fields for overall scenario results are organized in the Scenario Calculation Results Section. These outputs are typical of most of the scenario calculations and are detailed under Typical Scenario Calculation Results.

QA/QC Benchmarks:

The calculation was benchmarked against an internal RKR spreadsheet with fluid properties developed from a commercial simulator (Symmetry) using an overall heat and material balance approach based on an assumed initial gas volume of 857 ft³. The initial relief temperature from Pressio was 417 °F versus 416.3 °F in Symmetry. In both cases the temperature increment for determining the expansion rate was

10 °F which resulted in required relief rates of 4,723 lb/hr and 4,628 lb/hr in Pressio and Symmetry (0.2% difference), respectively.

Thermal Expansion of Trapped Vapor

Vapor Thermal Expansion

Equipment Data:

Equipment Tag:	E-6000	Туре:	Shell and Tube Exchanger
Drawing:	PID-6000	MAWP:	350 psig
Description:	Depropanizer Reboiler (Shell)	MAWT:	300 F

Scenario Description:

in the event that the shell side is free of liquid, overpressure could occur due to expansion of the vapor as a result of continued heat input from the hot oil on the tube side. The required relief rate was based on the design duty of the reboiler, the normal reboiler vapor composition at operating conditions of 270 psig @ 260 F and the relief pressure of 385 psig.

Scenario Calculation Results:

Required Rate:	4723.1	lb/hr	Device Choke Pressure:	222.6	psig
Actual Capacity:	71422.5	lb/hr	Outlet Temperature:	395.4	F
Required Area:	0.201	in2	Outlet Mass Quality:	1.000	
Actual Area:	3.043	in2	Outlet Density:	0.097	lb/ft3
Relief Pressure:	385.0	psig	Outlet Ideal Cp/Cv:	1.1	
Relief Temperature:	427.0	F	Outlet Viscosity:	0.012	сР
Relief MW:	60.37		Inlet Non-Recoverble dP:	4.6	psi
Relief Mass Quality:	1.000		Inlet dP % Set:	1.3	% Set
Relief Density:	3.15	lb/ft3	Built-Up Back Pressure:	60.1	psig
Relief SG:	2.082		Built-Up Back P % Set:	17.2	% Set
Relief Z:	0.81		Total Back Pressure:	60.1	psig
Relief Ideal Cp/Cv:	1.06		Total Back P % Set:	17.2	% Set
Relief Viscosity:	0.012	сР			

Atmospheric Dispersion Screening (Constant Back Pressure = 0 and Hydrocarbons Only):

Tail Pipe Exit Diameter:		in
Reset % Capacity:	0.0	%
Exit Minimum RE:		
Horizontal Distance (x):	0	ft
Sonic Velocity:		fps
Exit Quality Acceptable:		
Lighter than Air:		
Flammable::		
Toxic:		
Dispersion Screening Pass:		

	Exit Velocity:		fps
	Exit/Wind Velocity:	0.0	0.0
Horizontal Distance (x):	Minimum Exit Velocity:	0.0	0.0 fps
	Horizontal Distance (x):		ft

Thermal Expansion of Trapped Vapor

Vapor Thermal Expansion

Equipment Data:

-4			
Equipment Tag:	E-6000	Туре:	Shell and Tube Exchanger
Drawing:	PID-6000	MAWP:	350 psig
Description:	Depropanizer Reboiler (Shell)	MAWT:	300 F

Scenario Input Data:

Operating Heat Input:		5	MMBtu/hr
Heat Input Basis:	Design Du	ty	
Operating Pressure:		270	psig
Operating Temperatu	re:	260	F
Delta T for Expansion:		10	F
Correct for Reduced L	MTD:		
Hot Inlet Temperature	e:	550	F
Hot Oulet Temperatu	re:	450	F
Set Pressure:		350	psig
Allowable Overpressu	re:	10.0%	
Device Outlet Pressure:		0	psig
Thermodynamics Ena	bled:	\checkmark	
Thermo Package:	Advanced	_Peng-Robinson	
Relief Device Kd:		0.627	
Nozzle Sizing:	API 520 Va	apor	
Outlet Pipe Sizing:	Adiabatic		

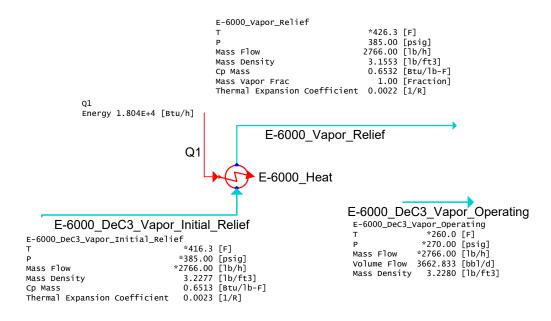
Scenario Output Data:

LMTD Operating:	236.5	F
LMTD Relief:	59.6	-
Heat Input Relief:	1.26	MMBtu/hr
Initial Relief Temperature:	417.0	F
Initial Relief Density:	3.228	lb/ft3
Initial Relief Cp:	0.651	Btu/lb/F
Cubical Expansion Factor:	0.0024	1/F
Required Mass Rate:	4,723.1	lb/hr
Required Std. Vol. Rate:	0.70	MMSCFD
Required Air Rate:	55,949.2	scfh air
Relief Mass Flux:	939.9	lb/sec/ft2

Thermal Expansion of Trapped Vapor

Vapor Thermal Expansion

Equipment Data:


Equipment Tag:	E-6000	Туре:	Shell and Tube Exchanger
Drawing:	PID-6000	MAWP:	350 psig
Description:	Depropanizer Reboiler (Shell)	MAWT:	300 F

Relief Stream Composition:

Stream Description:	Depropanizer Reboiler Va
Component	Mole Fraction
methane	
ethane	
propane	0.0500
isobutane	0.2000
butane	0.5500
isopentane	0.1500
pentane	0.0400
hexane	0.0100
heptane	
octane	
nonane	
decane	
carbon dioxide	
hydrogen sulfide	
methanol	
water	

E-6000 Vapor Thermal Expansion

Heat Time = 18,040 Btu / 1,340,000 Btu/hr = 0.0135 hr = 0.81 min Mass Released = (3.2277 lb/ft3 - 3.1553 lb/ft3) * 857 ft3 = 62.3 lbRequired Rate = 62.3 lb / 0.0135 hr = 4,628 lb/hr

Vapor Expansion due to Process Heat Input

Total Heat Input at Relief	1,340,000	Btu/hr
Trapped Volume	857.0	ft ³
Trapped Mass	2,766	lb
ΔT for Expansion	10.0	°F
Operating Temperature (T _{op})	260	°F
Operating Density (ρ_{op})	3.2277	lb/ft ³
Initial Relief Temperature (T ₁)	416.3	°F
Initial Relief Density (ρ_1)	3.2280	lb/ft ³
Intial Relief Mass Heat Capacity (C_{p1})	0.6514	Btu/lb/°F
Relief Temperature (T ₂)	426.30	°F
Relief Density (ρ_2)	3.1553	lb/ft ³
Relief Mass Heat Capacity (C _{p2})	0.651	Btu/lb/°F
Cubical Coefficient of Expansion (α_V)	0.0023	1/°F
Heat Required to Heat ∆T	18,040	Btu
Time Required to Heat ∆T	0.0135	hours
Mass Change Over ∆T	62.3	lb
Required Mass Relief Rate (H&M)	4,628	lb/hr
Required Mass Relief Rate (API Cubical Expansion)	4,723	lb/hr