Pipe Flow – Numerical Integration

Pipe Flow Numerical	Integration					
Equipment Data:						
Equipment Tag Number:	EqTag	—	Equipman	t Type:	EqType	
Drawing	Drawing	—	MAWP::::		MAWP	sig
Description	Description		MAWT:		MAWT	
Scenario Calculations:						
Input Data:			Output	Data:		
Upstream Pressure:	P1 psig		Upstrea	n:Density:	rho1	lb/ft3
Upstream Pressure Basis:	P1Basis		Upstrea	n:Viscosity:	Vis1	cP
Flash Type:	FlashType 🧹		Upstrea	n:Z:	Z1	
Upstream Mass Quality:	Q1		Upstrea	n:Ideal Cp/Cv:	k1	
Upstream:Temperature::::::	T1		Choked		Choked	
Set Pressure:	SetP Psig		Exit Pres	sore:	ChokeP	es a
Allowable:Overpressure:::::	OverP		Relief De	vica Xd:	Kd	
Constant Back Pressure:	P3 psig		Relief M	sss:Flux:	Flux2	lb/sec/ft2
Pipe NPS:	PipeNPS 🧹		Fanning	Friction Factor:	Fanning	
Pipe Sch:	PipeSch 🧹		Scenario	Description:	Scenario Descr	iptio
Pipe Inner Diamater	PipelD In					
Pipe Equiv. Length:	PipeEqL R					
Pipe Roughness:	Roughness Mili		Scen	ario Description Scen	ario Descriptio	
Number of Increments:	Pincrements					
Tharmo Package: ThermoP	ackage 🗸					
StreamID Open Stream Relief Device Liquid (d:)	KdL					
Relief Device Vapor Kd:	KdV					
Device Sizing: Sizing						
Outlet Plpe Sizing: OutPipes	Sizing 🗸					
	Calculate Preview	Print	C	ose		
Notes: No	tes					

Note: Thermodynamics are required for this form.

Equipment Data:

The six fields under Equipment Data are specified on the Overpressure Scenario Form.

Input Data:

The form fields for inputs are blue and organized under the Scenario Input column. The are described below:

P1 – Pressure upstream of restriction orifice. From most to least conservative: MAWP, PSV Set, PSHH, Max Operating

P1Basis – Description for choice of P1. PSV-100 Set Pressure, PSHH Setpoint, etc.

Flash Type – PT or PQ flash.

Q1 – Quality at inlet to pipe for PQ Flash Only. Calculated for PT Flash.

T1 – Temperature at inlet to pipe for PT Flash Only. Calculated for PQ Flash.

SetP – PSV set pressure used to determine relief pressure.

OverP – Allowable overpressure typically 10% used to determine relief pressure.

P3 – Constant back pressure when PSV is closed.

PipeNPS – Nominal pipe size (used along with PipeSch to get PipeID)

PipeSch – Pipe schedule (used along with PipeNPS to get PipeID)

PipeID = Pipe inner diameter (calculated if PipeNPS and PipeSch entered, otherwise must be input)

PipeEql = Pipe equivalent length

PipeRoughness = Pipe roughness used to quantify friction factor (default = 0.0018 in for carbon steel)

Pincrements – Number of pressure increments to be analyzed. (P1 - P2) / Pincrements = Pressure Step

ThermoPackage – Thermo package used for properties. VMG (Symmetry) packages or REFPROP 10.0 from NIST

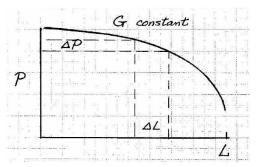
StreamID – The stream to be used for properties. A new stream can be added here. See <u>Stream Definition</u> Form.

KdL – Manufacturer's certified liquid Kd or 0.65 for API STD 520 default.

KdV – Manufacturer's certified vapor Kd or 0.975 for API STD 520 default.

Sizing – PSV sizing method: API 520 Vapor or Numerical Integration (recommended when Z <= 0.8).

OutPipeSizing – Outlet pressure drop method: Adiabatic, Omega Method or Numerical Integration.


Calculation Method:

This form supports liquid, vapor or two phase flow through a pipe of constant diameter and fixed length. The iterative solution is based on the procedure and equations below presented at a Design Institute of Emergency Relief Systems meeting.

Pipe-Segment Numerical Integration

$$\Delta \mathbf{L} = -\frac{\overline{\mathbf{v}} \,\Delta \mathbf{P} + \mathbf{G}^2 \,\overline{\mathbf{v}} \,\Delta \mathbf{v}}{\frac{2\mathbf{f}}{\mathbf{D}} \,\mathbf{G}^2 \,\overline{\mathbf{v}}^2}$$

where ΔP is pressure increment Δv is incremental specific volume over ΔP \overline{v} is average specific volume in ΔP

-19-

DIERS Users Group Orlando Mtg./March 23-25, 2009

Numerical Integration Steps

- 1. G is known or guessed.
- 2. Increments of pressure are taken from the initial to the final pressure.
- 3. \overline{V} and Δv are obtained for each increment for a constant-enthalpy process.
- 4. ΔL for each ΔP taken is computed from Eq. in previous slide.
- 5. Total length of pipe L is $\Sigma \Delta L$.
- 6. If ΔL is negative, then ΔP is too large.
- 7. A critical flow condition corresponds to $\Delta L = 0$, and the final pressure corresponds to choked pressure.
- 8. If $\sum \Delta L > L$, then G was guessed too small and Steps 1-7 are repeated with a larger G. If $\sum \Delta L < L$, then G was guessed too large; Steps 1-7 are repeated with a smaller G.
- 9. A converged solution is obtained when $\sum \Delta L = L$ to within a given tolerance.

Ref.: Perry's ChE Hdb, "Fluid Dynamics" section, 7th ed., also Leung, CEP article, 1996. -20-

Scenario Output Data:

The form fields for scenario-specific outputs are organized under the Scenario Output column. These are described below:

- rho1 Upstream density in lb/ft3 typically from thermo engine.
- Vis1 = Upstream viscosity in cP from thermo engine
- Z1 Upstream compressibility typically from thermo engine.
- K1 Upstream ideal C_p/C_v typically from thermo engine.
- Choked Yes for critical flow, no for subcritical flow
- ChokeP Calculated choke pressure or downstream pressure if not choked
- Kd Overall relief valve Kd based on volumetric average of liquid and vapor values if two phase
- Flux2 RequiredRateMass · RequiredArea * 144 / 3600

Fanning – Fanning friction factor

Scenario Calculation Results:

The form fields for overall scenario results are organized in the Scenario Calculation Results Section. These outputs are typical of most of the scenario calculations and are detailed under Typical Scenario Calculation Results.

QA/QC Benchmarks:

The pipe flow numerical integration calculation was benchmarked against CCFlow from DIERs which utilized the three point projection method to develop the density versus pressure relationship resulting in a flowrate of 25,906 lb/hr. In addition, the same case was evaluated using a commercial simulator which does not check for choked flow at the pipe segment exit but in this case yielded a very similar result of 28,938 lb/hr. Pressio calculated the pipe flow rate as 28,880 lb/hr. The deviation from CCFlow is believed to be due to the density versus pressure relationship interpolation. Finally, the calculation was performed in an internal RKR spreadsheet which quantified an identical result to Pressio.

Pipe Flow Numerical Integration 1" Drain Valve Open

Equipment Data:					
Equipment Tag:	V-1000	Туре:	Pressure Vessel		
Drawing:	PID-1000	MAWP:	150 psig		
Description:	Slug Catcher	MAWT:	250 F		

Scenario Description:

The maximum pressure upstream of the 1" ball valve drain is 350 psig as dictated by the MAWP of the NGL Tank. As such, inadvertent opening of this valve could result in overpressure. The required relief rate was based on the recovery NGL composition at 350 psig and the associated bubblepoint temperature. As the drain valve is a ball valve, the relief requirement was based on pipe flow through the 1" Sch 80 drain line that has an equivalent length of 20 ft.

Scenario Results Summary:

Required Rate:	28830.6	lb/hr	Device Choke Pressure:	82.5	psig
Actual Capacity:	48378.7	lb/hr	Outlet Temperature:	-64.5	F
Required Area:	1.098	in2	Outlet Mass Quality:	0.502	
Actual Area:	1.838	in2	Outlet Density:	0.243	lb/ft3
Relief Pressure:	165.0	psig	Outlet Ideal Cp/Cv:		
Relief Temperature:	44.3	F	Outlet Viscosity:	0.046	сР
Relief Mass Quality:	0.217		Inlet Non-Recoverble dP:	0.8	psi
Relief Density:	5.41	lb/ft3	Inlet dP % Set:	0.6	% Set
Relief MW:	41.57		Built-Up Back Pressure:	12.2	psig
Relief Viscosity:	0.061	сР	Built-Up Back P % Set:	8.1	% Set
			Total Back Pressure:	12.2	psig
			Total Back P % Set:	8.1	% Set
			Reaction Force:	257	lbf

Pipe Flow Numerical Integration 1" Drain Valve Open

Equipment Data:

Equipment Tag:	V-1000	Туре:	Pressure Vessel
Drawing:	PID-1000	MAWP:	150 psig
Description:	Slug Catcher	MAWT:	250 F

Scenario Calculations:

Input Data:

Upstream Pressure:		350	psig
Upstream Pressure B	asis:	MAWP	
Flash Type:		РТ	
Upstream Mass Qual	ity:	0.001	
Upstream Temperatu	ire:	90.0	F
Set Pressure:		150	psig
Allowable Overpress	ure:	10.00%	
Constant Back Pressu	ire:	0	psig
Pipe NPS:		1"	
Pipe Schedule:		80	
Pipe Inner Diameter:		0.957	in
Pipe Equiv. Length:		20	ft
Pipe Roughness:		0.0018	in
Number of Incremen	ts:	10	
Relief Device Liquid K	d:	0.650	
Relief Device Vapor K	d:	0.975	
Thermo Package: Advanced_		Peng-Robinson	
Nozzle Sizing:	API Nume	rical Integration	
Outlet Pipe Sizing:	Omega Me	ethod	
Notes:			

Output Data:

Upstream Density:	28.74	lb/ft3
Upstream Z:	0.000	
Upstream Ideal Cp/Cv:	0.000	
Upstream Viscosity:	0.065	сР
Choked:	No	
Exit Pressure:	165	psig
Relief Device Kd:	0.940	
Relief Mass Flux:	1050.3	lb/sec/ft2
Fanning Friction Factor:	0.006	

Notes:

Pipe Flow Numerical Integration 1" Drain Valve Open

Equipment Data:					
Equipment Tag:	V-1000	Туре:	Pressure Vessel		
Drawing:	PID-1000	MAWP:	150 psig		
Description:	Slug Catcher	MAWT:	250 F		

Relief Stream Composition:

Stream Description:	Recovery NGL
---------------------	--------------

Component	Mole Fraction
nitrogen	0.0000
methane	0.0036
carbon dioxide	0.0073
ethane	0.4896
hydrogen sulfide	0.0000
propane	0.3102
isobutane	0.0502
butane	0.0666
isopentane	0.0193
pentane	0.0120
hexane	0.0275
heptane	0.0137
octane	
nonane	
decane	
methanol	
water	

CCPS - CCflow

TWO-PHASE FLOW THROUGH PIPING

File Name: C:\Users\Administrator\OneDrive\2022 VMG Relief DB Development\Pressio 2024 Pipe Flow Save Date: 7/11/2024 2:11:00 PM Print Date: 7/11/2024 2:11:25 PM Project: Plant: Pressio Pipe Flow Calc. Option: 3 Point HEM

F):			
364.7	289.7	179.7	
0.343	0.446	0.743	
0.0346	0.033	0.031	
0.065	0.077	0.01	
0.0094	0.0091	0.0086	
0.957			
20			
0.0018			
0			
0			
0			
364.7			
179.7			
179.7			
1440.6			
25,906.			
6,891.			
6,891.			
5.783			
0.0158			
317.5			
	0 0.343 0.0346 0.065 0.0094 0.957 20 0.0018 0 0 364.7 179.7 179.7 1440.6 25,906. 6,891. 6,891.	364.7 289.7 0 0.1101 0.343 0.446 0.0346 0.033 0.065 0.077 0.0094 0.0091 0.957 20 0.0018 0 0 0 364.7 179.7 179.7 1440.6 25,906. 6,891. 5.783 0.0158 1.08E+07 0.00577 71.0 1.0	364.7 289.7 179.7 0 0.1101 0.266 0.343 0.446 0.743 0.0346 0.033 0.031 0.065 0.077 0.01 0.0094 0.0091 0.0086 0.957 20 0.0018 0 0 0 364.7 179.7 179.7 1440.6 25,906. 6,891. 6,891. 5.783 0.0158 1.08E+07 0.00577 71.0

Name Pipe1										Description ~
S1		8	• →		>	S2	2	-		X
Pressure Drop C	Corr.		Colebro	ok - Filter			Al	II -		and Agent and Agent
Summary	Pipe Det	tail	Profiles	Heat Trans	fer S	Sizing	Settings	Equilibrium Results	Report	t Notes
✓ Main Data				✓ Pipe Da	ata			✓ Results		
Name		>	Value	Name		>	Value	Name	>	Value
Delta P [psi]			185.00	Total Leng	th [ft]		20.00	Velocity In [ft/s]		55.69
OutQ [Btu/h]			0.000E+0	Elevation			Profile	Velocity Out [ft/s]		287.68
U [Btu/h-ft2-F]			0.00	Elevation I	n [ft]		0.00	Max Mach		0.75
Heat Transfer C	Calc Type		Simple -	Elevation C	Out [ft]		0.00	Max RhoV2 [psi]		99.92
Outside Data			Ambient -	Schedule			80 🕶	Inventory		
External T [F]			77.0	Nominal S	ize (in)		1-	Line Pack [SCF]		1.06
Number of Sec	tions		10	Inner Diam	neter [in]		0.957	Liquid [ft3]		0.055
Slip Exponent			0.00	Outer Dian	neter [in	1	1.315	Oil [ft3]		0.055
Friction Factor	Tuning		1.00	Thickness	[in]		0.179	Water [ft3]		0.000
				Roughness	s [in]		0.0018	Bulk Std Liq Vol [ft3]	0.060
Material										
PortName			In		Out					
Is Recycle Port			I		Г					
Connected Stre	eam/Unit (Op	/S1.Out	-	/S2.In		-			

Fortivallie	111	Out
Is Recycle Port		
Connected Stream/Unit Op	/S1.Out 🔻	/S2.In 🔻
VapFrac	0.0001	0.25597
T [F]	90.0	43.6
P [psia]	364.70	179.70
Mole Flow [lbmol/h]	696.15	696.15
Mass Flow [lb/h]	28938.09	28938.09
Volume Flow [ft3/s]	0.278	1.437
Std Liq Volume Flow [ft3/s]	0.279	0.279
Std Gas Volume Flow [MMSCFD]	6.3403E+0	6.3403E+0

Pipe Flow Numerical Integration Based on Curve Fit from PV Data Tab Solve for Flow Based on P1 and P2

P increment	18.5	psi
Mass Flow	28880	lb/hr
Pipe ID	0.957	in
Pipe Area	0.004995	ft ²
G	1606.001	lb/sec/ft2
Pipe Length Specified	20	ft
Fanning F	0.00576	
P ₁	350	psig
P _{bubble}	350	psig
P ₂	165	psig

Goal Seek G11 to Equal B11 by Changing B7

Pipe Length Calculated	20.00
Choke P	165 psig

Increment	P ₁	P ₂	v ₁	v ₂	Δν	V _{avg}	Term 1	Term 2	Term 3	L
1	350	332	0.03460	0.04158	0.00698	0.03809	(3,264.12)	685.62	540.47	4.7708
2	332	313	0.04158	0.04965	0.00807	0.04561	(3,909.02)	949.48	775.14	3.8181
3	313	295	0.04965	0.05889	0.00924	0.05427	(4,650.77)	1,293.26	1,097.22	3.0600
4	295	276	0.05889	0.06942	0.01053	0.06415	(5,497.94)	1,742.46	1,533.35	2.4492
5	276	258	0.06942	0.08146	0.01205	0.07544	(6,465.33)	2,343.78	2,120.43	1.9437
6	258	239	0.08146	0.09542	0.01395	0.08844	(7,579.32)	3,182.45	2,914.09	1.5088
7	239	221	0.09542	0.11190	0.01648	0.10366	(8,883.35)	4,406.07	4,003.10	1.1185
8	221	202	0.11190	0.13179	0.01989	0.12184	(10,441.92)	6,251.17	5,530.99	0.7577
9	202	184	0.13179	0.15615	0.02436	0.14397	(12,338.03)	9,044.61	7,722.08	0.4265
10	184	165	0.15615	0.18575	0.02960	0.17095	(14,650.34)	13,053.04	10,887.75	0.1467
11	165	147	0.18575	0.21974	0.03399	0.20275	(17,375.55)	17,776.35	15,315.10	-