

GAS PLANT XYZ PSV-1100 V-1100, INLET SEPARATOR

SCENARIO SUMMARY	2-6
LCV-3400 FAILURE OPEN GAS BLOWBY	7-10
EXTERNAL FIRE LIQUID CONDENSATE VAPORIZATION	11-13
V-4100/4200 1" MANUAL DRAIN OPEN	14-16
F-3300/3301 OR V-4100/4200 LCV BYPASS OPEN GAS-BLOWBY	17-19
COMPRESSOR 3 RD STAGE SUCTION SCRUBBER GAS-BLOWBY	20-22
LCV-3400 BYPASS OPEN GAS BLOWBY	23-25
EXTERNAL FIRE WATER VAPORIZATION CALCULATION	26-28
LCV-4100/4200 FAILURE OPEN GAS BLOWBY	29-32
LCV-3300/3301 FAILURE OPEN GAS BLOWBY	33-36
PSV-1100 DESIGN CASE DETAILED SIZING	37-38
PSV-1100 DATASHEET	39
PSV-1100 TEST REPORT	40
PSV-1100 VENDOR CERTIFICATION	41
PSV-1100 INLET AND OUTLET PIPING	42
V-1100 NAMEPLATE	43
RELEVANT PIDS	44-51

P.E. STATE OF COLORADO #42086

Scenario Summary

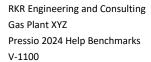
PSV-1100

Equipment Tag: V-1100 Relief Valve Tag:

Inlet Separator Relief Valve Type/Size: Conventional 4" x M x 6"

MAWP/MAWT/MDMT: 720 psig @ 120 / -20 F Relief Valve Orifice Area: 4.08 in2

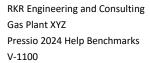
Drawing Number: PID-1100 Relief Valve Set Pressure: 250 psig


Recommendations: Notes:

Scenario / Credible	Description	Constraint	P1/P2	Req. Rate / Area	In/Out/Total dP (Rat	ed Capacity)
LCV-3400 Failure Open	The After Separator sends liquids to the Inlet Separator and has a design pressure of 1,440 psig and the maximum pressure is	LCV-3400	1250	61,605.3 lb/hr	2.9 psi	1.2 % Set
Basis Case	limited to 1,250 psig by the compressor 3rd stage discharge PSHH set points. As such, overpressure could occur in the event the level control valve were to fail open or bypass is	2" Kimray 2200SMT PO, 1" Linear Trim	313.5	3.117 in2	22.1 psi	8.8 % Set
	inadvertently opened with subsequent gas blowby. Per field verification, LCV-3400 is a 2" Kimray 2200SMT PO with 1" linear trim. Flow coefficients were obtained from vendor literature. The upstream conditions were based on 1,250 psig and 120 F. This case represents what is currently present in the field. Note the liquid inventory in the After Scrubber is minimal	Cv = 21.0, Xt = 0.77			22.1 psig	8.8 % Set
	compared to the surge volume available in the Inlet Separator therefore no concerns are present with overfilling prior to gas blowby.					
V-1100 External Fire HC Liquid	The Inlet Separator may contain hydrocarbon liquids that condense out of the inlet stream. As such, overpressure could	LSHH-1101		55,551.1 lb/hr	2.5 psi	1.0 % Set
Credible	occur in the event of an external fire due to vaporization of the liquid. As the simulation predicts only water condensation, the			2.003 in2	24.5 psi	9.8 % Set
	hydrocarbon liquid composition was estimated by dropping the temperature to about 40 F and using the resulting hydrocarbon liquid composition at the relief pressure of 344.9 psig. The liquid level of 80% was based on the location of LSHH-1101 as estimated in the field.	Level = 80%			24.5 psig	9.8 % Set

Equipment Description:

Scenario / Credible	Description	Constraint	P1 / P2	Req. Rate / Area	In/Out/Total dP (F	Rated Capacity)
V-4100/4200 Drain Valve Inadvertently Opened	The Contactor scrubber section also has a 1" ball valve that can drain liquid to the Inlet Separator. As described for the failure	V-4100/4200 Drain	1250	34,660.5 lb/hr	2.8 psi	1.1 % Set
Credible	open of the LCV case, inadvertent opening of the drain valve could result in overpressure due to gas blowby. The required	1" Ball Valve	313.5	1.801 in2	21.3 psi	8.5 % Set
	relief rate was evaluated using the same conditions as the control valves and 19.6 equivalent feet of 1" Sch 80 pipe as determined from the 3D model (1 entrance, 6.5' pipe, 1 ball valve, 1 swing check valve, 2 tee through runs).	ID = 0.957", Leq = 19.6'			21.3 psig	8.5 % Set
	Note the liquid inventory in the contactors is minimal compared to the surge volume available in the Inlet Separator therefore no concerns are present with overfilling prior to gas blowby.					
LCV-3300/3301/4100/4200 Bypass Open	In a similar manner as the control valves, inadvertent opening of the 1" globe valve bypass around LCV-3300, 3301 and 4100 could result in overpressure. The required relief rate was based on the	F-3300 and V- 4100/4200 LCV Bypasses	1250	22,507.3 lb/hr	2.9 psi	1.2 % Set
Credible	normal gas composition at 1,250 psig and 120 F . The globe valve Cv was based on a regular port globe valve (Crane) and an Xt = 1.0 was assumed.	1" RP Globe Valve	313.5	1.139 in2	22.1 psi	8.8 % Set
		Cv = 6.8, Xt = 1			22.1 psig	8.8 % Set
Gas Blowby from Compressor Scrubbers	The Inlet Separator receives liquids from the 2nd Stage and 3rd Stage Compressor Suction Scrubbers. The maximum pressures in	3rd Scrubber LCV or Bypass	500	10,342.5 lb/hr	2.8 psi	1.1 % Set
Credible	the 2nd Stage Suction Scrubbers are limited to 200 psig (1st Stage Discharge PSHH set point), while the maximum pressure in	1" Sch 160 Piping	313.5	0.565 in2	21.6 psi	8.6 % Set
	the 3rd Stage Suction Scrubbers are limited to 500 psig (2nd Stage Discharge PSHH set point). As such, In the event that a liquid level control valve or manual bypass valve on one of the 3rd Stage Suction Scrubbers fails or is inadvertently opened overpressure of the Inlet Separator could occur due to gas blowby. All of the liquid level dump stations consist of a 1" LCV and a 1" manual bypass ball valve. As the 1" bypass represents the worst case, the required relief rate was conservatively based on the flow through 10' of 1" Sch 160 pipe (scrubbers are physically about 15' apart). The upstream conditions were taken as 500 psig at 120 F with the downstream relief pressure of 313.5 psig.	Leq = 10', ID = 0.815"			21.6 psig	8.6 % Set
	Note the liquid inventory in the Scrubbers is minimal compared to the surge volume available in the Inlet Separator therefore no concerns are present with overfilling prior to gas blowby.					



Scenario / Credible	Description	Constraint	P1 / P2	Req. Rate / Area	In/Out/Total dP (Ra	ated Capacity)
LCV-3400 Bypass Failure Open	The After Separator sends liquids to the Inlet Separator and has a design pressure of 1,440 psig and the maximum pressure is	LCV-3400 or Bypass	1250	6,425.9 lb/hr	2.8 psi	1.1 % Set
Credible	limited to 1,250 psig by the compressor 3rd stage discharge PSHH set points. As such, overpressure could occur in the event	RO-3400	313.5	0.334 in2	21.3 psi	8.5 % Set
	the bypass is inadvertently opened with subsequent gas blowby. Per field verification, the relief requirement is limited by RO-3400 with 3/8" ID. The upstream conditions were based on 1,250 psig and 120 F.	ID = 3/8"			21.3 psig	8.5 % Set
	Note the liquid inventory in the After Scrubber is minimal compared to the surge volume available in the Inlet Separator therefore no concerns are present with overfilling prior to gas blowby.					
V-1100 External Fire Water	The Inlet Separator may contain water that condenses out of the inlet stream. As such, overpressure could occur in the event of	LSHH-1101		4,756.1 lb/hr	3.3 psi	1.3 % Set
Credible	an external fire due to vaporization of the water. The fluid			0.306 in2	25.6 psi	10.2 % Set
	properties were based on the properties of pure water at the relief pressure of 344.9 psig (trace dissolved hydrocarbons were conservatively removed). The liquid level of 80% was based on the location of LSHH-1101 as estimated in the field.	Level = 80%			25.6 psig	10.2 % Set
LCV-4100/4200 Failure Open	The Contactor scrubber section sends liquids to the Inlet	LCV-4100/4200	1250	4,824.9 lb/hr	2.8 psi	1.1 % Set
Credible	Separator and has a design pressure of 1,440 psig and the maximum pressure is limited to 1,250 psig by the compressor 3rd stage discharge PSHH set points. As such, overpressure could occur in the event any of the level control valves were to fail	1" Kimray 1400SMT PO, 1/4" Linear Trim	313.5	0.255 in2	21.6 psi	8.6 % Set
	open with subsequent gas blowby. The required relief rate was based on the normal gas composition at 1,250 psig and 120 F. Per field verification, LCV-4100 is a 1" Kimray 1400SMT PO with 1/4" linear trim and flow coefficients were obtained from vendor literature.	Cv = 2.17, Cf = 0.78			21.6 psig	8.6 % Set
	Note the liquid inventory in the 42" ID contactor is minimal compared to the surge volume available in the Inlet Separator therefore no concerns are present with overfilling prior to gas blowby.					

Scenario / Credible	Description	Constraint	P1 / P2	Req. Rate / Area	In/Out/Total dP (Ra	ated Capacity)
LCV-3300/1 Failure Open	The Inlet Filter Coalescer sends liquids from both chambers to	LCV-3300/3301	1250	4,886.9 lb/hr	2.9 psi	1.2 % Set
Credible	the Inlet Separator and has a design pressure of 1,440 psig and the maximum pressure is limited to 1,250 psig by the compressor 3rd stage discharge PSHH set points. As such, overpressure could occur in the event either of the level control valves were to fail	1" Kimray 1400SMT PO, 1/4" Linear Trim	313.5	0.248 in2	22.1 psi	8.8 % Set
	open with subsequent gas blowby. The required relief rate was based on the normal gas composition at 1,250 psig and 120 F. Per field verification, LCV-3300 and 3301 are both 1" Kimray 1400SMT PO with 3/8" linear trim and flow coefficients were obtained from vendor literature.	Cv = 2.17, Cf = 0.78			22.1 psig	8.8 % Set
	Note the liquid inventory in the Coalescer is minimal compared to the surge volume available in the Inlet Separator therefore no concerns are present with overfilling prior to gas blowby.					
VRU Drain Pump	Liquids from the two VRU Compressors are pumped from the					
Not Credible	suction scrubber to the Inlet separator by a positive displacement pump with a rated flow of 5 gpm. Overfilling from this intermittent source is considered not credible, therefore the pumps do not present a potential source of overpressure.					
BPV-4130/4230 Failure Open	Vapors from the TEG Flash Separators are routed to the Inlet Separator via BPV-4130 and BPV-4230. As the maximum					
Not Credible	pressure in the TEG Flash Separator is limited to 125 psig by the design pressure and associated relief valve, a failure open of this control valve is not a credible scenario.					
Blocked Outlet - Pipeline Inlet	The maximum inlet pipeline pressure cannot exceed 215 psig. Therefore, overpressure of the Inlet Separator due to a blocked					
Not Credible	outlet is not an overpressure concern.					
External Fire Vapor Expansion	The Inlet Separator may be free of liquids in which case					
Not Credible	overpressure could occur due to expansion of the vapor during an external fire. However, based on the maximum suction pressure of 60 psig (compressor 1st stage suction PSHH set					
	point), the temperature would have to exceed the maximum wall temperature of 1,100 F to reach the relief pressure of 344.9 psig. As such, a thermal failure would be expected prior to					
	overpressure and the relief valve does not provide protection against this scenario.					

Scenario / Credible	Description	Constraint	P1 / P2	Req. Rate / Area	In/Out/Total dP (Rated Capacity)
Instrument Air Failure	In the event of an instrument air failure, the inlet from pipeline				
Not Credible	will be shutdown by the fail closed ESD-0100 as well as PCV-				
Not credible	1000/1001. In addition, the main plant recycle control valve (PCV-2000) along with other high pressure dump valves that feed				
	back to suction are all fail closed. Finally, the suction header,				
	discharge header and fuel gas header will be depressured by fail				
	open blowdown valves.				
Electric Power Failure	An electric power failure does not represent an overpressure				
Not Credible	concern. The compressors are expected to shutdown and				
Not Credible	ultimately instrument air will be lost. See Instrument Air Failure.				
PCV-2000 Failure Open	PSV-2000 which is present on the suction header and set at 215				
Net Condible	psig provides protection for a failure open of PCV-2000 (Plant				
Not Credible	Recycle), therefore this scenario does not require consideration				
	for this relief valve.				
PCV-1100 or PCV-1101 Failure Open	Although the Inlet Separator (V-1100) has relief provided via PSV-				
	1100 at 285 psig, the maximum inlet pipeline pressure cannot				
Not Credible	exceed 215 psig. Therefore, a failure open of either pipeline inlet				
	pressure control valves does not represent a potential				
	overpressure scenario.				

Vapor Control Valve Failure: LCV-3400

LCV-3400 Failure Open

Equipment Data:

Equipment Tag:V-1100Type:Pressure VesselDrawing:PID-1100MAWP:720 psigDescription:Inlet SeparatorMAWT:120 F

Scenario Description:

The After Separator sends liquids to the Inlet Separator and has a design pressure of 1,440 psig and the maximum pressure is limited to 1,250 psig by the compressor 3rd stage discharge PSHH set points. As such, overpressure could occur in the event the level control valve were to fail open or bypass is inadvertently opened with subsequent gas blowby. Per field verification, LCV-3400 is a 2" Kimray 2200SMT PO with 1" linear trim. Flow coefficients were obtained from vendor literature. The upstream conditions were based on 1,250 psig and 120 F. This case represents what is currently present in the field.

Note the liquid inventory in the After Scrubber is minimal compared to the surge volume available in the Inlet Separator therefore no concerns are present with overfilling prior to gas blowby.

Required Rate:	61,605.3	lb/hr	Device Choke Pressure:	167.9	psig
Actual Capacity:	80,613.7	lb/hr	Outlet Temperature:	22.3	F
Required Area:	3.117	in2	Outlet Mass Quality:	1.000	
Actual Area:	4.08	in2	Outlet Density:	0.062	lb/ft3
Relief Pressure:	313.5	psig	Outlet Ideal Cp/Cv:	1.249	
Relief Temperature:	56.1	F	Outlet Viscosity:	0.009	сР
Relief MW:	21.56		Inlet Non-Recoverble dP:	2.9	psi
Relief Mass Quality:	0.987		Inlet dP % Set:	1.0	% Set
Relief Density:	1.422	lb/ft3	Built-Up Back Pressure:	22.1	psig
Relief SG:	0.743		Built-Up Back P % Set:	7.8	% Set
Relief Z:	0.899		Total Back Pressure:	22.1	psig
Relief Ideal Cp/Cv:	1.242		Total Back P % Set:	7.8	% Set
Relief Viscosity:	0.010	СР	Reaction Force:	1393	lbf

Vapor Control Valve Failure: LCV-3400

LCV-3400 Failure Open

Equipment Data	a:								
Equipment Tag:	V-1100	V-1100			Type:	Р	Pressure Vessel		
Drawing:	PID-1100				MAWP:		720 psig		
Description:	Inlet Separator			MAWT:		120 F			
Scenario Input	Data:				Scenario Out	put Data:			
Control Valve Tag:		LCV-3400			Fk:		0.88		
Gas Type:		Inlet Gas			K1 Inlet Piping Re	esistance:	0		
Upstream Pressure:		1250	psig		K2 Outlet Piping	Resistance:	0		
Upstream Pressure	Basis:	3rd Stage Dischar	rge PSHH		K1 Inlet Piping Be	ernoulli:	0		
Upstream Tempera	ture:	120	F		K2 Outlet Piping	Bernoulli:	0		
Dewpoint Vapor:					Fp:		1		
Set Pressure:		285	psig		dP/P1 Actual:		0.740		
Allowable Overpres	sure:	10.0%			dP/P1 Critical:		0.674		
Constant Back Press	sure:	0	psig		Y:		0.667		
Required Relief Rate	e Units:	lb/hr			Upstream Densit	ty:	5.673	lb/ft3	
Sizing Method		IEC			Upstream Z:		0.772		
Cv:		21			Upstream Ideal (Cp/Cv:	1.226		
Xt (Cf for Kimray):		0.77			Control Valve Flo	ow:	61,605.3	lb/hr	
C1:					Required Mass R	ate:	61,605.3	lb/hr	
Cg:					Required Rate St	d Vol:	26.0	MMSCFD	
Control Valve ID:		1.939	in		Required Air Rate	e:	931,447.0	scfh air	
Inlet Pipe ID:		1.939	in		Relief Mass Flux:	:	790.5	lb/sec/ft2	
Outlet Pipe ID:		1.939	in						
Additional Flow:		0.0	lb/hr						
Use Thermo		✓							
Thermo Package:	Advanced	_Peng-Robinson							
Relief Device Kd:		0.818		•					
Nozzle Sizing:	API 520 V	apor							
Outlet Pipe Sizing:	Adiabatic								
Notes:									

Vapor Control Valve Failure: LCV-3400

LCV-3400 Failure Open

Equipment Data:

Equipment Tag:V-1100Type:Pressure VesselDrawing:PID-1100MAWP:720 psigDescription:Inlet SeparatorMAWT:120 F

Relief Stream Composition:

Stream Description: Sigma Dry Gas

Component	Mole Fraction
carbon dioxide	0.0048
nitrogen	0.0155
methane	0.7553
ethane	0.1281
propane	0.0624
isobutane	0.0053
butane	0.0184
isopentane	0.0031
pentane	0.0042
hexane	0.0015
heptane	0.0007
octane	0.0007
nonane	0.0000
decane	0.0000
methanol	0.0000
water	0.0000
triethylene glycol	0.0000

V-1100 External Fire HC Liquid

Equipment Data:

Equipment Tag:V-1100Type:Pressure VesselDrawing:PID-1100MAWP:720 psigDescription:Inlet SeparatorMAWT:120 F

Scenario Description:

The Inlet Separator may contain hydrocarbon liquids that condense out of the inlet stream. As such, overpressure could occur in the event of an external fire due to vaporization of the liquid. As the simulation predicts only water condensation, the hydrocarbon liquid composition was estimated by dropping the temperature to about 40 F and using the resulting hydrocarbon liquid composition at the relief pressure of 344.9 psig. The liquid level of 80% was based on the location of LSHH-1101 as estimated in the field.

Required Rate:	55551.1	lb/hr	Device Choke Pressure:	172.4	psig
Actual Capacity:	113181.6	lb/hr	Outlet Temperature:	319.1	F
Required Area:	2.003	in2	Outlet Mass Quality:	1.000	
Actual Area:	4.080	in2	Outlet Density:	0.107	lb/ft3
Relief Pressure:	344.9	psig	Outlet Ideal Cp/Cv:	1.065	
Relief Temperature:	355.9	F	Outlet Viscosity:	0.010	сР
Relief MW:	59.94		Inlet Non-Recoverble dP:	2.5	psi
Relief Mass Quality:	1.000		Inlet dP % Set:	0.9	% Set
Relief Density:	3.24	lb/ft3	Built-Up Back Pressure:	24.5	psig
Relief SG:	2.067		Built-Up Back P % Set:	8.6	% Set
Relief Z:	0.76		Total Back Pressure:	24.5	psig
Relief Ideal Cp/Cv:	1.06		Total Back P % Set:	8.6	% Set
Relief Viscosity:	0.011	сР			

V-1100 External Fire HC Liquid

Equipment Data	:						
Equipment Tag:	V-1100				Type:	Pressure Vessel	
Drawing:	PID-1100				MAWP:	720 psig	
Description:	Inlet Sepai	rator			MAWT:	120 F	
Scenario Input D	ata:				Scenario Output Data	:	
Length:		20	ft		Wetted Area:	305.8	ft2
Diameter:		66	in		Fire Heat Input:	3.77	MMBtu/hr
Orientation:		Horizontal			Total Heat/lb Vaporized:	600.0	Btu/lb
Head Type:		2:1 Ellipsoidal			Sensible Heat/lb Vaporized	532.2	Btu/lb
Level Basis:		LSHH-1101			Latent Heat:	67.8	Btu/lb
Additional Wetted A	rea:	9.8	ft2		Initial Relief Temperature:	320.6	F
Level:		80%			Temp. at Start Quality:	320.7	F
Bottom Elevation:		4	ft		Cp at Start Quality:	0.737	Btu/lb/F
Area Exponent:		0.82			Cp at Final Quality:	0.773	Btu/lb/F
Adequate Drainage					Liquid Density:	32.10	lb/ft3
Insulation Factor:		1			Required Mass Rate:	55551.1	lb/hr
Start Mass % Vapor:		0.00%			Required Std. Vol. Rate:	8.44	MMSCFD
Finish Mass % Vapor	:	5.00%			Required Air Rate:	633378.9	scfh air
Remove Sensible Hea	at: 🗸	Correct for Dens	ities:		Relief Mass Flux:	1109.6	lb/sec/ft2
Set Pressure:		285	psig				
Allowable Overpress	ure:	21.0%					
Constant Back Pressu	ure:	0	psig				
Use Thermodynamic	s:	✓					
Thermo Package:	Advanced	_Peng-Robinson					
Relief Device Kd:		0.818					
Nozzle Sizing:	API Numei	rical Integration V	apor/				
Outlet Pipe Sizing:	Adiabatic						
Notes:	Additional	area accounts fo	r boot which was	s estimated	d to be 18" OD x 2' S/S.		

V-1100 External Fire HC Liquid

Equipment Data:

Equipment Tag:V-1100Type:Pressure VesselDrawing:PID-1100MAWP:720 psigDescription:Inlet SeparatorMAWT:120 F

Liquid Stream Description: Theta Inlet Liquids

Relief Stream Description: V-1100 Fire HC Vapor

Component	Liquid Stream Mole Fraction	Relief Stream Mole Fraction
carbon dioxide	0.0006	0.0024
nitrogen	0.0001	0.0009
methane	0.0271	0.1388
ethane	0.0356	0.1172
propane	0.0727	0.1662
isobutane	0.0178	0.0299
butane	0.0950	0.1442
isopentane	0.0461	0.0508
pentane	0.0829	0.0853
hexane	0.1178	0.0799
heptane	0.1659	0.0768
octane	0.3383	0.1067
water	0.0002	0.0008

Equipment Data:

Equipment Tag:V-1100Type:Pressure VesselDrawing:PID-1100MAWP:720 psigDescription:Inlet SeparatorMAWT:120 F

Scenario Description:

The Contactor scrubber section also has a 1" ball valve that can drain liquid to the Inlet Separator. As described for the failure open of the LCV case, inadvertent opening of the drain valve could result in overpressure due to gas blowby. The required relief rate was evaluated using the same conditions as the control valves and 19.6 equivalent feet of 1" Sch 80 pipe as determined from the 3D model (1 entrance, 6.5' pipe, 1 ball valve, 1 swing check valve, 2 tee through runs).

Note the liquid inventory in the contactors is minimal compared to the surge volume available in the Inlet Separator therefore no concerns are present with overfilling prior to gas blowby.

Scenario Results Summary:

Required Rate:	34660.5	lb/hr	Device Choke Pressure:	125.4	psig
Actual Capacity:	78893	lb/hr	Outlet Temperature:	22.3	F
Required Area:	1.801	in2	Outlet Mass Quality:	1.000	
Actual Area:	4.08	in2	Outlet Density:	0.062	lb/ft3
Relief Pressure:	313.5	psig	Outlet Ideal Cp/Cv:	1.249	
Relief Temperature:	56.1	F	Outlet Viscosity:	0.010	сР
Relief Mass Quality:	0.987		Inlet Non-Recoverble dP:	2.8	psi
Relief Density:	1.42	lb/ft3	Inlet dP % Set:	1.0	% Set
Relief MW:	21.56		Built-Up Back Pressure:	21.3	psig
Relief Viscosity:	0.010	сР	Built-Up Back P % Set:	7.5	% Set
			Total Back Pressure:	21.3	psig
			Total Back P % Set:	7.5	% Set
			Reaction Force:	1052	lbf

Equipment Data	:							
Equipment Tag:	V-1100				Туре:	Pressure	Vessel	
Drawing:	PID-1100				MAWP:	720	psig	
Description:	Inlet Sepai	rator			MAWT:	120	F	
Scenario Calcula	tions:							
nput Data:					Output Data:			
Upstream Pressure:		1250	psig		Upstream Density:		5.67	lb/ft3
Upstream Pressure B	asis:	3rd Stage Discha	rge PSHH		Upstream Z:		0.772	
Flash Type:		PT		<u> </u>	Upstream Ideal Cp/Cv:		1.226	
Upstream Mass Qual	ity:	1.000			Upstream Viscosity:		0.011	сР
Upstream Temperati	ıre:	120.0	F		Choked:		Yes	
Set Pressure:		285	psig		Exit Pressure:		379.6	psig
Allowable Overpress	ure:	10.00%			Relief Device Kd:		0.817	
Constant Back Pressu	ıre:	0	psig		Relief Mass Flux:		769.8	lb/sec/ft2
Pipe Nominal Pipe Si	ze:	1"			Fanning Friction Factor:		0.006	
Pipe Nominal Pipe Sc	hedule:	80						
Pipe Inner Diameter:		0.957	in					
Pipe Equiv. Length:		19.6	ft					
Pipe Roughness:		0.0018	in					
Number of Incremen	ts:	10						
Relief Device Liquid k	(d:	0.707						
Relief Device Vapor k	(d:	0.818						
Thermo Package:	Advanced_	_Peng-Robinson						
Nozzle Sizing:	API Numei	rical Integration						
Outlet Pipe Sizing:	Isotherma	l						
Notes:								

Equipment Data:

Equipment Tag:V-1100Type:Pressure VesselDrawing:PID-1100MAWP:720 psigDescription:Inlet SeparatorMAWT:120 F

Relief Stream Composition:

Stream Description: Sigma Dry Gas

Component	Mole Fraction
carbon dioxide	0.0048
nitrogen	0.0155
methane	0.7553
ethane	0.1281
propane	0.0624
isobutane	0.0053
butane	0.0184
isopentane	0.0031
pentane	0.0042
hexane	0.0015
heptane	0.0007
octane	0.0007
nonane	0.0000
decane	0.0000
methanol	0.0000
water	0.0000
triethylene glycol	0.0000

Vapor Control Valve Failure: LCV-3300/01/4100/200

LCV-3300/3301/4100/4200 Bypass Open

Equipment Data:

Equipment Tag:V-1100Type:Pressure VesselDrawing:PID-1100MAWP:720 psigDescription:Inlet SeparatorMAWT:120 F

Scenario Description:

In a similar manner as the control valves, inadvertent opening of the 1" globe valve bypass around LCV-3300, 3301 and 4100 could result in overpressure. The required relief rate was based on the normal gas composition at 1,250 psig and 120 F . The globe valve CV was based on a regular port globe valve (Crane) and an Xt = 1.0 was assumed.

Required Rate:	22,507.3	lb/hr	Device Choke Pressure:	167.9	psig
Actual Capacity:	80,613.7	lb/hr	Outlet Temperature:	22.3	F
Required Area:	1.139	in2	Outlet Mass Quality:	1.000	
Actual Area:	4.08	in2	Outlet Density:	0.062	lb/ft3
Relief Pressure:	313.5	psig	Outlet Ideal Cp/Cv:	1.249	
Relief Temperature:	56.1	F	Outlet Viscosity:	0.009	сР
Relief MW:	21.56		Inlet Non-Recoverble dP:	2.9	psi
Relief Mass Quality:	0.987		Inlet dP % Set:	1.0	% Set
Relief Density:	1.422	lb/ft3	Built-Up Back Pressure:	22.1	psig
Relief SG:	0.743		Built-Up Back P % Set:	7.8	% Set
Relief Z:	0.899		Total Back Pressure:	22.1	psig
Relief Ideal Cp/Cv:	1.242		Total Back P % Set:	7.8	% Set
Relief Viscosity:	0.010	СР	Reaction Force:	1393	lbf

Vapor Control Valve Failure: LCV-3300/01/4100/200

LCV-3300/3301/4100/4200 Bypass Open

Equipment Dat	a:						
Equipment Tag:	g: V-1100			Type:	Pressure Vessel		
Drawing:	PID-1100				MAWP:	720 psig	
Description:	Inlet Sepa	arator			MAWT:	120 F	
Scenario Input	Data:				Scenario Output Da	ta:	
Control Valve Tag:		LCV-3300/01/41	00/200 Bypass		Fk:	0.88	В
Gas Type:		Inlet Gas			K1 Inlet Piping Resistance	e: (
Upstream Pressure	:	1250	psig		K2 Outlet Piping Resistar	nce: (
Upstream Pressure	Basis:	3rd Stage Discha	rge PSHH		K1 Inlet Piping Bernoulli:	(
Upstream Tempera	ture:	120	F		K2 Outlet Piping Bernoul	li: C)
Dewpoint Vapor:					Fp:	1	
Set Pressure:		285	psig		dP/P1 Actual:	0.740	
Allowable Overpres	ssure:	10.0%			dP/P1 Critical:	0.876	5
Constant Back Pres	sure:	0	psig		Y:	0.718	3
Required Relief Rat	e Units:	lb/hr			Upstream Density:	5.673	lb/ft3
Sizing Method		IEC			Upstream Z:	0.772	2
Cv:		6.8			Upstream Ideal Cp/Cv:	1.226	5
Xt (Cf for Kimray):		1			Control Valve Flow:	22,507.3	lb/hr
C1:					Required Mass Rate:	22,507.3	lb/hr
Cg:					Required Rate Std Vol:	9.5	MMSCFD
Control Valve ID:		0.957	in		Required Air Rate:	340,301.2	scfh air
Inlet Pipe ID:		0.957	in		Relief Mass Flux:	790.5	lb/sec/ft2
Outlet Pipe ID:		0.957	in				
Additional Flow:		0.0	lb/hr				
Use Thermo		✓					
Thermo Package:	Advanced	I_Peng-Robinson					
Relief Device Kd:		0.818		_			
Nozzle Sizing:	API 520 V	apor					
Outlet Pipe Sizing:	Adiabatic]			
Notes:							

Vapor Control Valve Failure: LCV-3300/01/4100/200

LCV-3300/3301/4100/4200 Bypass Open

Equipment Data:

Equipment Tag:V-1100Type:Pressure VesselDrawing:PID-1100MAWP:720 psigDescription:Inlet SeparatorMAWT:120 F

Relief Stream Composition:

Stream Description: Sigma Dry Gas

Component	Mole Fraction
carbon dioxide	0.0048
nitrogen	0.0155
methane	0.7553
ethane	0.1281
propane	0.0624
isobutane	0.0053
butane	0.0184
isopentane	0.0031
pentane	0.0042
hexane	0.0015
heptane	0.0007
octane	0.0007
nonane	0.0000
decane	0.0000
methanol	0.0000
water	0.0000
triethylene glycol	0.0000
_	
	

Equipment Data:

Equipment Tag:V-1100Type:Pressure VesselDrawing:PID-1100MAWP:720 psigDescription:Inlet SeparatorMAWT:120 F

Scenario Description:

The Inlet Separator receives liquids from the 2nd Stage and 3rd Stage Compressor Suction Scrubbers. The maximum pressures in the 2nd Stage Suction Scrubbers are limited to 200 psig (1st Stage Discharge PSHH set point), while the maximum pressure in the 3rd Stage Suction Scrubbers are limited to 500 psig (2nd Stage Discharge PSHH set point). As such, In the event that a liquid level control valve or manual bypass valve on one of the 3rd Stage Suction Scrubbers fails or is inadvertently opened overpressure of the Inlet Separator could occur due to gas blowby. All of the liquid level dump stations consist of a 1" LCV and a 1" manual bypass ball valve. As the 1" bypass represents the worst case, the required relief rate was conservatively based on the flow through 10' of 1" Sch 160 pipe (scrubbers are physically about 15' apart). The upstream conditions were taken as 500 psig at 120 F with the downstream relief pressure of 313.5 psig.

Note the liquid inventory in the Scrubbers is minimal compared to the surge volume available in the Inlet Separator therefore no concerns are present with overfilling prior to gas blowby.

Scenario Results Summary:

Required Rate:	10342.5	lb/hr	Device Choke Pressure:	125.4	psig
Actual Capacity:	74921.7	lb/hr	Outlet Temperature:	82.5	F
Required Area:	0.565	in2	Outlet Mass Quality:	1.000	
Actual Area:	4.08	in2	Outlet Density:	0.055	lb/ft3
Relief Pressure:	313.5	psig	Outlet Ideal Cp/Cv:	1.235	
Relief Temperature:	106.9	F	Outlet Viscosity:	0.011	сР
Relief Mass Quality:	1.000		Inlet Non-Recoverble dP:	2.8	psi
Relief Density:	1.26	lb/ft3	Inlet dP % Set:	1.0	% Set
Relief MW:	21.56		Built-Up Back Pressure:	21.6	psig
Relief Viscosity:	0.011	сР	Built-Up Back P % Set:	7.6	% Set
			Total Back Pressure:	21.6	psig
			Total Back P % Set:	7.6	% Set
			Reaction Force:	1061	lbf

V-1100				Type:	Pressure \	/essel	
PID-1100				MAWP:	720	psig	
Inlet Separ	ator			MAWT:	120	F	
ions:							
				Output Data:			
	500	psig		Upstream Density:		1.99	lb/ft3
ısis:	2nd Stage Discha	arge PSHH		Upstream Z:		0.896	
	PT			Upstream Ideal Cp/Cv:		1.226	
ty:	1.000			Upstream Viscosity:		0.011	сР
re:	120.0	F		Choked:		No	
	285	psig		Exit Pressure:		313.5	psig
re:	10.00%			Relief Device Kd:		0.818	
e:	0	psig		Relief Mass Flux:		732.2	lb/sec/ft2
e:	1"			Fanning Friction Factor:		0.006	
nedule:	160						
	0.815	in					
	10	ft					
	0.0018	in					
s:	10						
d:	0.707						
d:	0.818						
Advanced_	_Peng-Robinson						
API Numer	ical Integration						
Isotherma							
	PID-1100 Inlet Separions: ions: sis: re: re: re: re: re: d: d: Advanced_ API Numer	Solution Solution	Solution Solution	Solution Solution	PID-1100 Inlet Separator MAWP: MAWT: Output Data: Upstream Density: Upstream Ideal Cp/Cv: Upstream Viscosity: Upstream Viscosity: Choked: Exit Pressure: Relief Device Kd: Re: 0 psig Relief Mass Flux: Fanning Friction Factor: re: 10.0018 in S: 10 d: 0.0018 in S: Advanced_Peng-Robinson API Numerical Integration	PID-1100	PID-1100 MAWP: 720 psig Inlet Separator MAWT: 120 F

Equipment Data:

Equipment Tag:V-1100Type:Pressure VesselDrawing:PID-1100MAWP:720 psigDescription:Inlet SeparatorMAWT:120 F

Relief Stream Composition:

Stream Description: Sigma HP Gas

Component	Mole Fraction
carbon dioxide	0.0048
nitrogen	0.0155
methane	0.7540
ethane	0.1279
propane	0.0623
isobutane	0.0053
butane	0.0184
isopentane	0.0031
pentane	0.0042
hexane	0.0015
heptane	0.0007
octane	0.0007
water	0.0015

Orifice Flow - Numerical Integration

LCV-3400 Bypass Failure Open

Equipment Data:

Equipment Tag:V-1100Type:Pressure VesselDrawing:PID-1100MAWP:720 psigDescription:Inlet SeparatorMAWT:120 F

Scenario Description:

The After Separator sends liquids to the Inlet Separator and has a design pressure of 1,440 psig and the maximum pressure is limited to 1,250 psig by the compressor 3rd stage discharge PSHH set points. As such, overpressure could occur in the event the bypass is inadvertently opened with subsequent gas blowby. Per field verification, the relief requirement is limited by RO-3400 with 3/8" ID. The upstream conditions were based on 1,250 psig and 120 F.

Note the liquid inventory in the After Scrubber is minimal compared to the surge volume available in the Inlet Separator therefore no concerns are present with overfilling prior to gas blowby.

Scenario Results Summary:

			i		
Required Rate:	6425.9	lb/hr	Device Choke Pressure:	125.4	psig
Actual Capacity:	78914.2	lb/hr	Outlet Temperature:	22.3	F
Required Area:	0.334	in2	Outlet Mass Quality:	1.000	
Actual Area:	4.08	in2	Outlet Density:	0.062	lb/ft3
Relief Pressure:	313.5	psig	Outlet Ideal Cp/Cv:	1.249	
Relief Temperature:	56.1	F	Outlet Viscosity:	0.010	сР
Relief Mass Quality:	0.987		Inlet Non-Recoverble dP:	2.8	psi
Relief Density:	1.42	lb/ft3	Inlet dP % Set:	1.0	% Set
Relief MW:	21.56		Built-Up Back Pressure:	21.3	psig
Relief Viscosity:	0.010	сР	Built-Up Back P % Set:	7.5	% Set
			Total Back Pressure:	21.3	psig
			Total Back P % Set:	7.5	% Set
			Reaction Force:	1052	lbf

Orifice Flow - Numerical Integration

LCV-3400 Bypass Failure Open

Equipment Data:

Equipment Tag: V-1100 Pressure Vessel Type: 720 psig PID-1100 MAWP: **Inlet Separator** MAWT: 120 F

Drawing: Description: **Input Data: Output Data:** RO Tag: RO-3400 Beta: 0.193 Gas Type: Dry Gas Orifice Flow C: 0.620 Upstream Pressure: 1250 psig Discharge Cd: 0.620 Upstream Pressure Basis: 3rd Stage Discharge PSHH Upstream Density: 5.67 lb/ft3 0.77 Flash Type: РΤ Upstream Z: Upstream Mass Quality: 1.000 Upstream Ideal Cp/Cv: 1.23 **Upstream Temperature:** 120.0 F Upstream Viscosity: 0.011 cP Set Pressure: 285 psig Choked: Yes 594.4 psig Allowable Overpressure: 10.00% Exit Pressure (P2 for Sizing): Constant Back Pressure: 0 psig Orifice Mass Flux: 2327.2 lb/sec/ft2 Pressure Increment: 10 Required Mass Rate: 6,425.9 lb/hr 1.939 Relief Kd: 0.817 Pipe ID: in Orifice ID: 0.375 in Relief Mass Flux: 769.6 lb/sec/ft2 Relief Device Liquid Kd: 0.707 Relief Device Vapor Kd: 0.818 Thermodynamic Package: Advanced_Peng-Robinson Nozzle Sizing: API Numerical Integration Vapor Outlet Pipe Sizing: Isothermal Notes:

Orifice Flow - Numerical Integration

LCV-3400 Bypass Failure Open

Equipment Data:

Equipment Tag:V-1100Type:Pressure VesselDrawing:PID-1100MAWP:720 psigDescription:Inlet SeparatorMAWT:120 F

Relief Stream Composition:

Stream Description: Sigma Dry Gas

Component	Mole Fraction
carbon dioxide	0.0048
nitrogen	0.0155
methane	0.7553
ethane	0.1281
propane	0.0624
isobutane	0.0053
butane	0.0184
isopentane	0.0031
pentane	0.0042
hexane	0.0015
heptane	0.0007
octane	0.0007
nonane	0.0000
decane	0.0000
methanol	0.0000
water	0.0000
triethylene glycol	0.0000
	0.0000
	0.0000
-	0.0000
	0.0000
	0.0000

V-1100 External Fire Water

Equipment Data:

Equipment Tag:V-1100Type:Pressure VesselDrawing:PID-1100MAWP:720 psigDescription:Inlet SeparatorMAWT:120 F

Scenario Description:

The Inlet Separator may contain water that condenses out of the inlet stream. As such, overpressure could occur in the event of an external fire due to vaporization of the water. The fluid properties were based on the properties of pure water at the relief pressure of 344.9 psig (trace dissolved hydrocarbons were conservatively removed). The liquid level of 80% was based on the location of LSHH-1101 as estimated in the field.

Required Rate:	4756.1	lb/hr	Device Choke Pressure:	181.3	psig
Actual Capacity:	63360.7	lb/hr	Outlet Temperature:	325.0	F
Required Area:	0.306	in2	Outlet Mass Quality:	1.000	
Actual Area:	4.080	in2	Outlet Density:	0.032	lb/ft3
Relief Pressure:	344.9	psig	Outlet Ideal Cp/Cv:	1.304	
Relief Temperature:	434.3	F	Outlet Viscosity:	0.017	сР
Relief MW:	18.02		Inlet Non-Recoverble dP:	3.3	psi
Relief Mass Quality:	1.000		Inlet dP % Set:	1.2	% Set
Relief Density:	0.78	lb/ft3	Built-Up Back Pressure:	25.6	psig
Relief SG:	0.621		Built-Up Back P % Set:	9.0	% Set
Relief Z:	0.87		Total Back Pressure:	25.6	psig
Relief Ideal Cp/Cv:	1.30		Total Back P % Set:	9.0	% Set
Relief Viscosity:	0.016	сР			

V-1100 External Fire Water

Equipment Data	:						
Equipment Tag:	V-1100			Type:	Pressure Vessel		
Drawing:	PID-1100				MAWP:	720 psig	
Description:	Inlet Sepai	rator			MAWT:	120 F	
Scenario Input D	ata:				Scenario Output Data	:	
Length:		20	ft		Wetted Area:	305.8	ft2
Diameter:		66	in		Fire Heat Input:	3.77	MMBtu/hr
Orientation:		Horizontal			Total Heat/lb Vaporized:	791.9	Btu/lb
Head Type:		2:1 Ellipsoidal			Sensible Heat/lb Vaporized:	0.0	Btu/lb
Level Basis:		LSHH-1101			Latent Heat:	791.9	Btu/lb
Additional Wetted A	rea:	9.8	ft2		Initial Relief Temperature:	434.3	F
Level:		80%			Temp. at Start Quality:	434.3	F
Bottom Elevation:		3	ft		Cp at Start Quality:	1.108	Btu/lb/F
Area Exponent:		0.82			Cp at Final Quality:	1.093	Btu/lb/F
Adequate Drainage					Liquid Density:	52.17	lb/ft3
Insulation Factor:		1			Required Mass Rate:	4756.1	lb/hr
Start Mass % Vapor:		0.00%			Required Std. Vol. Rate:	2.40	MMSCFD
Finish Mass % Vapor	:	5.00%			Required Air Rate:	103544.7	scfh air
Remove Sensible Hea	at:	Correct for Dens	ities:		Relief Mass Flux:	621.2	lb/sec/ft2
Set Pressure:		285	psig				
Allowable Overpress	ure:	21.0%					
Constant Back Pressure:		0	psig				
Use Thermodynamic	s:	✓					
Thermo Package:	REFPROP 1	10.0]			
Relief Device Kd:		0.818					
Nozzle Sizing:	API 520 Va	ipor]			
Outlet Pipe Sizing:	Isotherma	Isothermal]			
Notes:	Additional area accounts for boot which was			s estimate	d to be 18" OD x 2' S/S.		

V-1100 External Fire Water

Equipment Data:

Equipment Tag:V-1100Type:Pressure VesselDrawing:PID-1100MAWP:720 psigDescription:Inlet SeparatorMAWT:120 F

Liquid Stream Description: Water

Relief Stream Description: V-1100 Fire Water Vapor

Component	Liquid Stream Mole Fraction	Relief Stream Mole Fraction
hydrogen sulfide	0.0000	
nitrogen	0.0000	
methane	0.0000	
carbon dioxide	0.0000	
ethane	0.0000	
propane	0.0000	
butane	0.0000	
isobutane	0.0000	
pentane	0.0000	
isopentane	0.0000	
hexane	0.0000	
cyclohexane	0.0000	
heptane	0.0000	
octane	0.0000	
benzene	0.0000	
ethylbenzene	0.0000	
water	1.0000	1.0000
		-

Vapor Control Valve Failure: LCV-4100/4200

LCV-4100/4200 Failure Open

Equipment Data:

Equipment Tag:V-1100Type:Pressure VesselDrawing:PID-1100MAWP:720 psigDescription:Inlet SeparatorMAWT:120 F

Scenario Description:

The Contactor scrubber section sends liquids to the Inlet Separator and has a design pressure of 1,440 psig and the maximum pressure is limited to 1,250 psig by the compressor 3rd stage discharge PSHH set points. As such, overpressure could occur in the event any of the level control valves were to fail open with subsequent gas blowby. The required relief rate was based on the normal gas composition at 1,250 psig and 120 F . Per field verification, LCV-4100 is a 1" Kimray 1400SMT PO with 1/4" linear trim and flow coefficients were obtained from vendor literature.

Note the liquid inventory in the 42" ID contactor is minimal compared to the surge volume available in the Inlet Separator therefore no concerns are present with overfilling prior to gas blowby.

Required Rate:	4,824.9	lb/hr	Device Choke Pressure:	125.4	psig
Actual Capacity:	77,426.1	lb/hr	Outlet Temperature:	44.3	F
Required Area:	0.255	in2	Outlet Mass Quality:	1.000	
Actual Area:	4.08	in2	Outlet Density:	0.059	lb/ft3
Relief Pressure:	313.5	psig	Outlet Ideal Cp/Cv:	1.244	
Relief Temperature:	75.2	F	Outlet Viscosity:	0.010	сР
Relief MW:	21.56		Inlet Non-Recoverble dP:	2.8	psi
Relief Mass Quality:	0.997		Inlet dP % Set:	1.0	% Set
Relief Density:	1.359	lb/ft3	Built-Up Back Pressure:	21.6	psig
Relief SG:	0.743		Built-Up Back P % Set:	7.6	% Set
Relief Z:	0.910		Total Back Pressure:	21.6	psig
Relief Ideal Cp/Cv:	1.237		Total Back P % Set:	7.6	% Set
Relief Viscosity:	0.010	СР	Reaction Force:	1058	lbf

Vapor Control Valve Failure: LCV-4100/4200

LCV-4100/4200 Failure Open

Equipment Dat	a:								
Equipment Tag:	ipment Tag: V-1100				Type:	F	Pressure Vess	sel	
Drawing:	PID-1100	PID-1100			MAWP:		720 psi	g	
Description:	Inlet Sepa	arator			MAWT:		120 F		
Scenario Input	Data:				Scenario Out	out Data:			
Control Valve Tag:		LCV-4100/4200			Fk:			0.82	İ
Gas Type:		Inlet Gas			K1 Inlet Piping Re	sistance:		0	İ
Upstream Pressure	:	1250	psig		K2 Outlet Piping F	Resistance:		0	İ
Upstream Pressure	Basis:	3rd Stage Discha	rge PSHH		K1 Inlet Piping Be	rnoulli:		0	İ
Upstream Tempera	iture:	135	F		K2 Outlet Piping E	Bernoulli:		0	İ
Dewpoint Vapor:					Fp:			1	İ
Set Pressure:		285	psig		dP/P1 Actual:			0.740	l
Allowable Overpres	ssure:	10.0%			dP/P1 Critical:			0.515	İ
Constant Back Pres	sure:	0	psig		Y:			1.5	İ
Required Relief Rat	e Units:	lb/hr			Upstream Density	/ :		5.378	lb/ft3
Sizing Method		Kimray			Upstream Z:			0.794	İ
Cv:		2.17			Upstream Ideal C	p/Cv:		1.223	İ
Xt (Cf for Kimray):		0.78			Control Valve Flo	w:	1	1,824.9	lb/hr
C1:					Required Mass Ra	ate:	1	1,824.9	lb/hr
Cg:					Required Rate Sto	:loV t		2.0	MMSCFD
Control Valve ID:		0.957	in		Required Air Rate	: :	74	4,290.5	scfh air
Inlet Pipe ID:		0.957	in		Relief Mass Flux:			756.8	lb/sec/ft2
Outlet Pipe ID:		0.957	in						
Additional Flow:		0.0	lb/hr						
Use Thermo		✓							
Thermo Package:	Advanced	d_Peng-Robinson		7					
Relief Device Kd:		0.818		_					
Nozzle Sizing:	Numerica	al Integration]					
Outlet Pipe Sizing:	Adiabatio	:		j					
Notes:									

Vapor Control Valve Failure: LCV-4100/4200

LCV-4100/4200 Failure Open

Equipment Data:

Equipment Tag:V-1100Type:Pressure VesselDrawing:PID-1100MAWP:720 psigDescription:Inlet SeparatorMAWT:120 F

Relief Stream Composition:

Stream Description: Sigma Dry Gas

Component	Mole Fraction
carbon dioxide	0.0048
nitrogen	0.0155
methane	0.7553
ethane	0.1281
propane	0.0624
isobutane	0.0053
butane	0.0184
isopentane	0.0031
pentane	0.0042
hexane	0.0015
heptane	0.0007
octane	0.0007
nonane	0.0000
decane	0.0000
methanol	0.0000
water	0.0000
triethylene glycol	0.0000

Vapor Control Valve Failure: LCV-3300/3301

LCV-3300/1 Failure Open

Equipment Data:

Equipment Tag:V-1100Type:Pressure VesselDrawing:PID-1100MAWP:720 psigDescription:Inlet SeparatorMAWT:120 F

Scenario Description:

The Inlet Filter Coalescer sends liquids from both chambers to the Inlet Separator and has a design pressure of 1,440 psig and the maximum pressure is limited to 1,250 psig by the compressor 3rd stage discharge PSHH set points. As such, overpressure could occur in the event either of the level control valves were to fail open with subsequent gas blowby. The required relief rate was based on the normal gas composition at 1,250 psig and 120 F. Per field verification, LCV-3300 and 3301 are both 1" Kimray 1400SMT PO with 3/8" linear trim and flow coefficients were obtained from vendor literature.

Note the liquid inventory in the Coalescer is minimal compared to the surge volume available in the Inlet Separator therefore no concerns are present with overfilling prior to gas blowby.

Required Rate:	4,886.9	lb/hr	Device Choke Pressure:	167.9	psig
Actual Capacity:	80,528.0	lb/hr	Outlet Temperature:	22.3	F
Required Area:	0.248	in2	Outlet Mass Quality:	1.000	
Actual Area:	4.08	in2	Outlet Density:	0.062	lb/ft3
Relief Pressure:	313.5	psig	Outlet Ideal Cp/Cv:	1.249	
Relief Temperature:	57.2	F	Outlet Viscosity:	0.009	сР
Relief MW:	21.56		Inlet Non-Recoverble dP:	2.9	psi
Relief Mass Quality:	0.987		Inlet dP % Set:	1.0	% Set
Relief Density:	1.419	lb/ft3	Built-Up Back Pressure:	22.1	psig
Relief SG:	0.743		Built-Up Back P % Set:	7.7	% Set
Relief Z:	0.899		Total Back Pressure:	22.1	psig
Relief Ideal Cp/Cv:	1.242		Total Back P % Set:	7.7	% Set
Relief Viscosity:	0.010	СР	Reaction Force:	1389	lbf

Vapor Control Valve Failure: LCV-3300/3301

LCV-3300/1 Failure Open

Equipment Dat	ta:							
Equipment Tag:	: V-1100				Type:	Pres	sure Vessel	
Drawing:	PID-1100	PID-1100			MAWP:		720 psig	
Description:	: Inlet Separator				MAWT:		120 F	
Scenario Input	Data:				Scenario Output	t Data:		
Control Valve Tag:		LCV-3300/3301			Fk:		0.82	
Gas Type:		Inlet Gas			K1 Inlet Piping Resist	tance:	0	
Upstream Pressure	2:	1250	psig		K2 Outlet Piping Res	istance:	0	
Upstream Pressure	Basis:	3rd Stage Discha	rge PSHH		K1 Inlet Piping Berno	oulli:	0	
Upstream Tempera	ature:	120	F		K2 Outlet Piping Ber	noulli:	0	
Dewpoint Vapor:					Fp:		1	
Set Pressure:		285	psig		dP/P1 Actual:		0.740	
Allowable Overpre	ssure:	10.0%			dP/P1 Critical:		0.515	
Constant Back Pres	ssure:	0	psig		Y:		1.5	
Required Relief Ra	te Units:	lb/hr			Upstream Density:		5.674	lb/ft3
Sizing Method		Kimray			Upstream Z:		0.772	
Cv:		2.17			Upstream Ideal Cp/C	Cv:	1.226	
Xt (Cf for Kimray):		0.78			Control Valve Flow:		4,886.9	lb/hr
C1:					Required Mass Rate:	: [4,886.9	lb/hr
Cg:					Required Rate Std Vo	ol:	2.1	MMSCFD
Control Valve ID:		0.957	in		Required Air Rate:		73,966.6	scfh air
Inlet Pipe ID:		0.957	in		Relief Mass Flux:		789.5	lb/sec/ft2
Outlet Pipe ID:		0.957	in					
Additional Flow:		0.0	lb/hr					
Use Thermo		✓						
Thermo Package:	Advanced	d_Peng-Robinson]				
Relief Device Kd:		0.818		_				
Nozzle Sizing:	API 520 V	apor						
Outlet Pipe Sizing:	Adiabatio			Ī				
Notes:								
	1							

Vapor Control Valve Failure: LCV-3300/3301

LCV-3300/1 Failure Open

Equipment Data:

Equipment Tag:V-1100Type:Pressure VesselDrawing:PID-1100MAWP:720 psigDescription:Inlet SeparatorMAWT:120 F

Relief Stream Composition:

Stream Description: Sigma HP Gas

Component	Mole Fraction
carbon dioxide	0.0048
nitrogen	0.0155
methane	0.7540
ethane	0.1279
propane	0.0623
isobutane	0.0053
butane	0.0184
isopentane	0.0031
pentane	0.0042
hexane	0.0015
heptane	0.0007
octane	0.0007
water	0.0015

Detailed Sizing: API 520 Vapor

PSV Tag Number: PSV-1100 Drawing: PID-1100

Sizing Scenario: LCV-3400 Failure Open

Sizing Scenario:	LCV-3400 F	allure Open			
PSV Data:					
Device Type:	Conventional		Orifice Designation:	М	
Inlet NPS:	4"		Orifice Area:	4.08	in2
Inlet Schedule:	40		Set Pressure:	250.0	psig
Inlet Equivalent Length:	12.3	ft	Allowable Overpressure:	25%	
Outlet NPS:	6"		Constant Backpressure:	0.0	psig
Outlet Schedule:	40		Kd 0.818 Kb 1	.000 Kc	1.000
Outlet Equivalent Length:	12.1	ft	Device Sizing:	API 520	Vapor
			Outlet Pipe Sizing:	Ad	iabatic
			Thermo Package: A	dvanced_Peng-Ro	binson
Scenario Data:					
Required Rate:	61605.3	lb/hr	Relief Density:	1.422	lb/ft
Relief Mass Flux:	790.5	lb/ft2/sec	Relief Specific Gravity:	0.743	
Relief Pressure:	313.5	psig	Relief Viscosity:	0.010	сР
Relief Temperature:	56.1	F	Outlet Temperature:	22.3	F
Relief MW:	21.56		Outlet Mass Quality:	1.000	
Relief Z:	0.899		Outlet Density:	0.062	lb/ft
Relief Ideal Cp/Cv:	1.242		Outlet Viscosity:	0.009	сР
Relief Mass Quality:	0.987		Outlet Ideal Cp/Cv:	1.249	
PSV Sizing Results:					
Actual Capacity:	80613.7	lb/hr	Built-Up Back Pressure:	22.1	psi
Required Area:	3.118	in2	Built-Up Back P % of Set:	8.8%	1
Device Choke Pressure:	167.9	psig	Total Back Pressure:	22.1	psig
Inlet Pressure Drop:	2.9	psi	Total Back P % of Set:	8.8%	r ~0
Inlet dP % of Set:	1.2%	r	Tail Pipe Exit Pressure:	10.7	psig
			Tail Pipe Exit Area:	28.890	in2
			Reaction Force:	1392.8	lbf
				2552.0	- *

Detailed Sizing: API 520 Vapor

PSV Tag Number: PSV-1100 Drawing: PID-1100

Sizing Scenario: LCV-3400 Failure Open

Inlet Piping Pressure Drop Details

NPS	Sch	Fitting Type	Qty. or Length (ft)	Beta	EqL Actual NPS (ft)	EqL PSV Inlet NPS (ft)	Seg. dP (psi)	Exit P (psig)	Exit Vel. (fps)	Exit Mach	
4"	40	Sharp Edged Entranc	1	0	10.25	10.25	2.44	311.1	178.1	0.15	
4"	40	Ball Valve	1	0	1.01	1.01	0.24	310.8	178.1	0.15	
4"	40	Pipe	1	0	1.00	1.00	0.24	310.6	178.1	0.15	

Outlet Piping Pressure Drop Details

NPS	Sch	Fitting Type	Qty. or Length (ft)	Beta	EqL Actual NPS (ft)	EqL PSV Inlet NPS (ft)	Seg. dP (psi)	Exit P (psig)	Exit T (F)	Exit Vel. (fps)	Exit Mach
6"	40	Std. 90	1	0	7.08	7.08	4.2	17.9	24.8	917	0.78
6"	40	Pipe	5	0	5.00	5.00	17.9	10.7	24.1	1175	1

1	Client DKD	· F · · · · · · · · · · · · · · · · · ·	10	20	I Manufacturer Manual					
1		Engineering and C	onsulting	38 39						
2	Plant: Gas Plant XYZ				Model Number: 91-71M11T1MNX1					
3	-	ssio 2024 Help Ben	chmarks	40	Project Number: 2024-1000					
4		t Separator		41	Serial Number: 1045480					
5	P&ID Number: PID-	-1100		42	Equipment Tag: V-1100					
		GENERAL		40	PILOT					
6	Inlet: 4"	Sch. 40	ANSI 300# RFWN	43	7					
7	Outlet: 6"	Sch. 40	ANSI 150# RFWN	44	Pilot Body: N/A					
8	,,	ventional		45	Pilot Trim: N/A					
9	BonnetType: Clos			46	Pilot Seat: N/A					
10	NozzleType: Sem			47	Pilot Tube: N/A					
4.1		MAIN BODY		48	Back Flow Preventer:					
11	,	oon Steel		49	Supply Filter:					
12		nless Steel			SIZING BASIS					
13		oon Steel		50						
14		nless Steel		51	Stamp Required:					
15		nless Steel		52						
16	Seat: Vito			53	Relieves To: Atmosphere					
17		ome Alloy		54	Certified Test NB-18 Area and Kd					
18	Bellows: N/A	1			ACCESSORIES					
19				55						
20				56	3					
21				57						
				CTIO						
22	Actual Capacity:		80,613.7 lb/hr	58	, ,					
23	Required Capacity:		61,605.3 lb/hr	59 60	, ,					
24					·					
25					Combination Capacity Factor (Kc):					
FLUID DATA										
26	Operating Pressure:		146 psig	62						
27	Installed Set Pressure:		250 psig	63	, ,					
28	Cold Differential Set Pro		250 psig	64						
29	Allowable Overpressure	e:	25%	65	'					
30	Relief Pressure:		313.5 psig	66						
31	Operating Temperature	2:	267 F	67	Relief MW: 21.56					
32	Relief Temperature:		56.1 F	68						
33	Outlet Temperature:		22.3 F	69	7 - 1 - 1 - 1 - 1					
34	Inlet Pressure Drop:	2.9 psi	1.2 % of Set	70	,					
35	Constant Backpressure		0.0 % of Set	71	Relief cP/(Cp-R): 1.242					
36	BuiltUp Backpressure:	22.1 psi	8.8 % of Set	72	Relief SG: 0.743					
37	Total Backpressure:	22.1 psig	8.8 % of Set	OTEC						
			N	OTES						
	REVISIONS									
Re	v. Date	Description			Ву					
Α	12/1/2024	Issued for Re	view		RAK					
'`	12, 1, 2027	.ssaca for he	··- ••		IVIX					

MERCER VALVE COMPANY INC

6218 LONG DRIVE HOUSTON, TX. (713) 242-6960 VALVE REPAIR / TEST REPORT

JOB ORDER NUMBER:

COMPANY: ADDRESS:

CUSTOMER CONTACT: PO NUMBER:

DATE VALVE REPAIRED / TESTED: 6/10/2020

PLANT / BOOSTER									
UNIT #:									
LOCATION	1ST STAGE								
P.S.V. #:	1100								
MANUFACURER:	MERCER	CAP/BONNET	CLOSED						
MFG. SERIAL NO.:	1045480	OUTLET SIZE/RATING:	6" 150RF						
ORIFICE SIZE:	M	SEAT:	SOFT						
INLET SIZE:	4" 300RF	CAPACITY	17723 SCFM						
SET PRESSURE:	250	U.V. STAMPED:	YES						
MODEL #:	91-71M11T1MNX1								
	PRETEST INFO	ORMATION							
1ST POP: 252	2ND POP: 251								
REMARKS: TEST ON	LY - SEAL # FGS-218								
	INSPECTION IN	FORMATION							
		ADJUSTMENT:	N/A						
CAP:	ОК	SCREW:	N/A						
BONNET:	OK	JAM NUT:	N/A						
BODY:	OK	BLOWDOWN RING:	N/A						
NOZZLE:	N/A	SPRING:	N/A						
DISK:	N/A	SPRING WASHERS:	N/A						
SPRING DATA									
SPRING #:		COILS:	N/A						
WIRE SIZE:	NIRE SIZE: N/A		N/A						
	PARTS REP	LACED:							
NONE									
	VALVE DEDATE	ND DECEMBATE							
	VALVE REPAIR A	ND 1ESI DATA							
SET PRESSURE:	250	TEST GUAGE:	100501						
LEAK RATE:	LEAKAGE TIGHT @ 90% OF SET	MAINT SCHEDULE:	June - 20						
TEST MEDIA:	NITROGEN	MENT MAINT. DATE:	June - 21						
B.D.R.lower:	N/A	B.D.R. upper:	N/A						
REPAIR TAG DATA									
SET PRESSURE:	250	QUALITY CONTROL INSP:							
REPAIR SERIAL #:	1304192	REPAIR TAG:	ОК						
DATE TESTED:	6/10/2020	SEAL WIRE:	ОК						
V.R. STAMPED:	NO	NAT GAS CAP:							
		CAPACITY	17723 SCFM						

Office Number 1-800-833-6402

Webpage www.mercervalve.net

Fax Number 405-495-8728

Email sales@ mercervalve.net

MERCER VALVE CO., INC.®

AUTO SEAT TECHNOLOGY®

PSV-1100

CERTIFICATE OF COMPLIANCE

Customer Name:

Customer PO Number: 5733299

Item Description: Qty: (1) 91-71M11T1MNX1

Series 9100

Set @ 250 psi

Capacity SCFM Air 17723

Repair Kit Number:

4" 300 RF X 6" 150 RF

Serial Number(s)

1095043

Customer PN

6M1T1NX4

Mercer Valve Sales Order Number: BS300 Mercer Valve Job Order Number: BS300-4

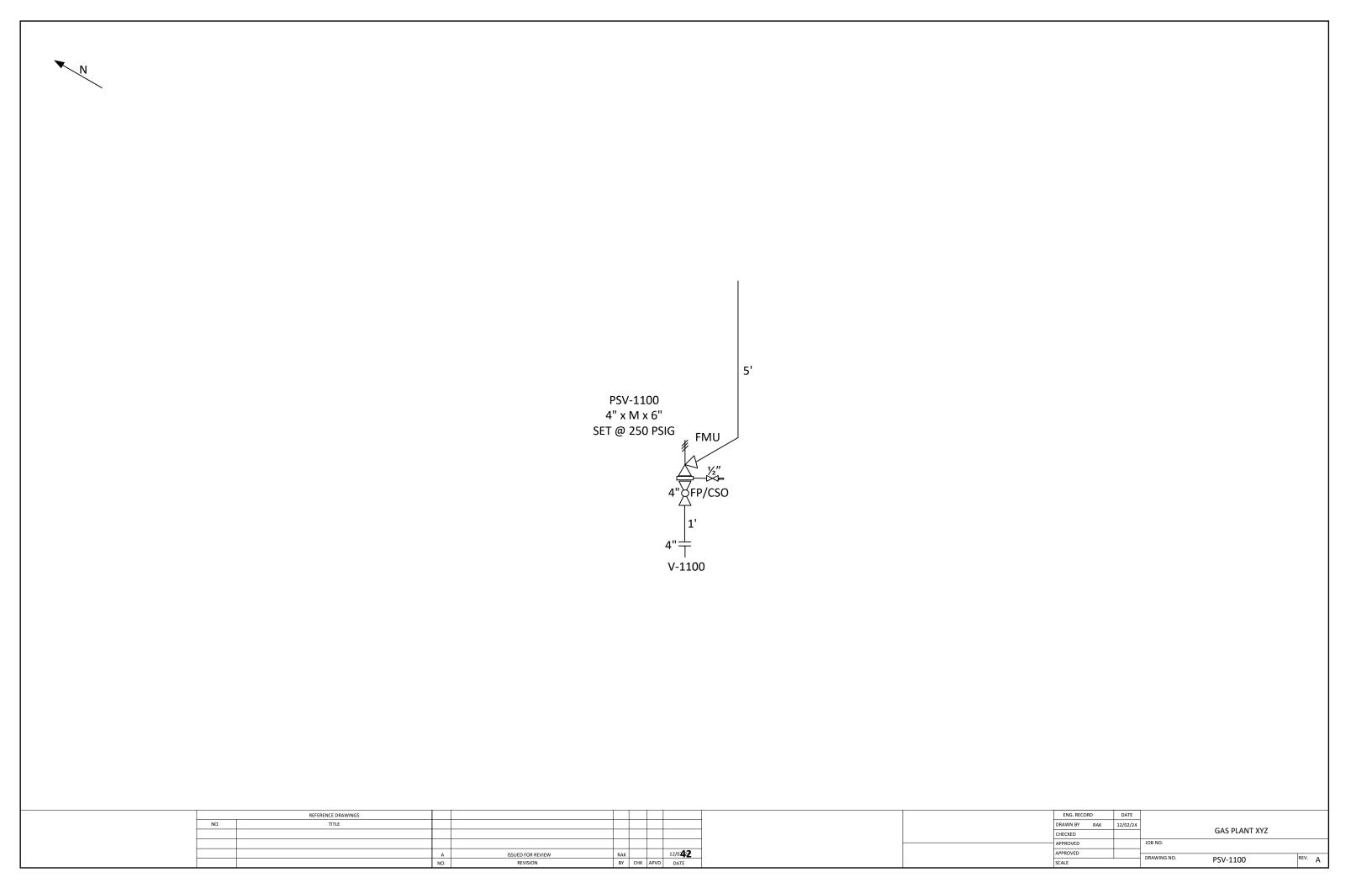
Valve Setting Instructions:

Set Pressure: 250 psi

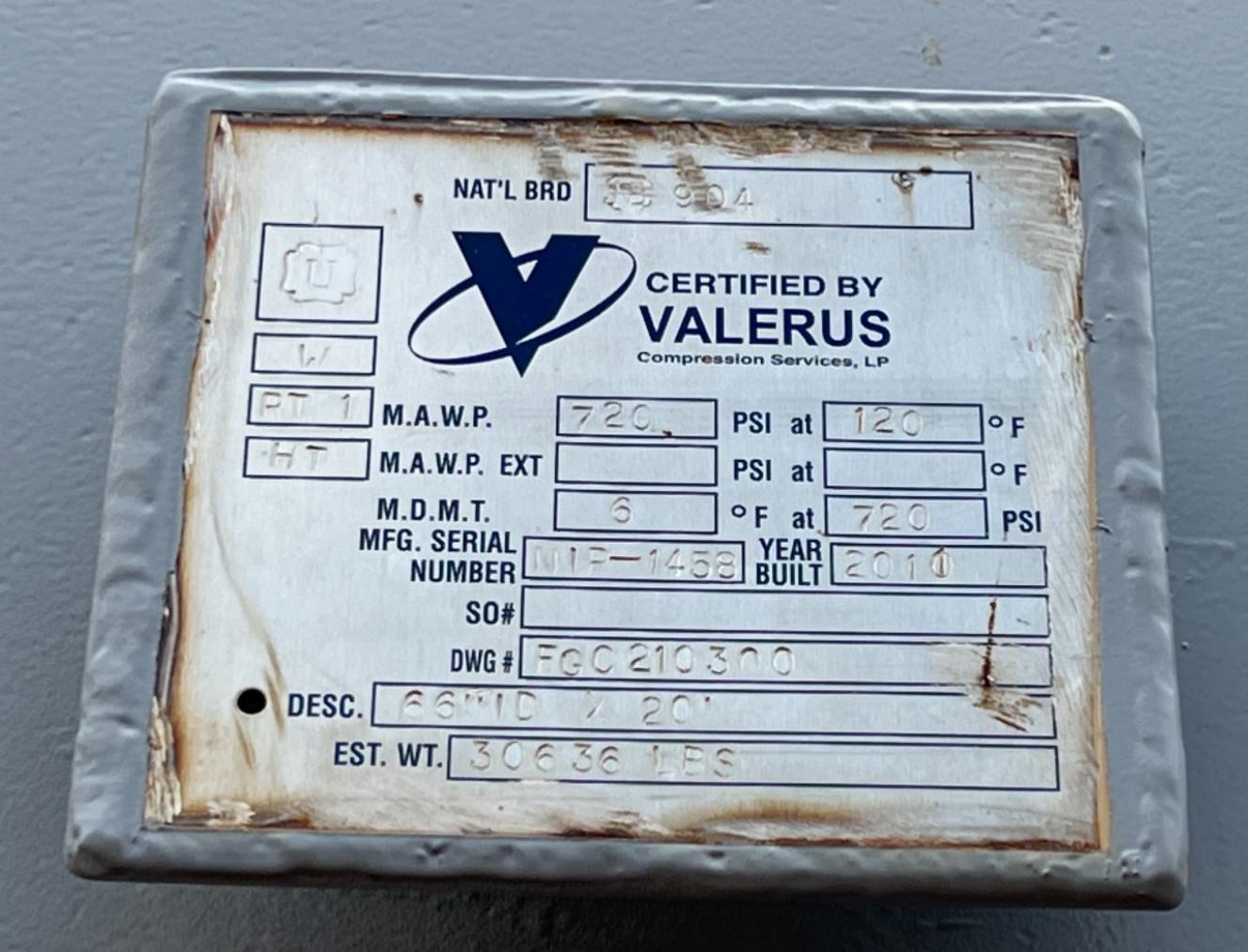
Set Pressure Tolerance: 3%

Test Medium: Air

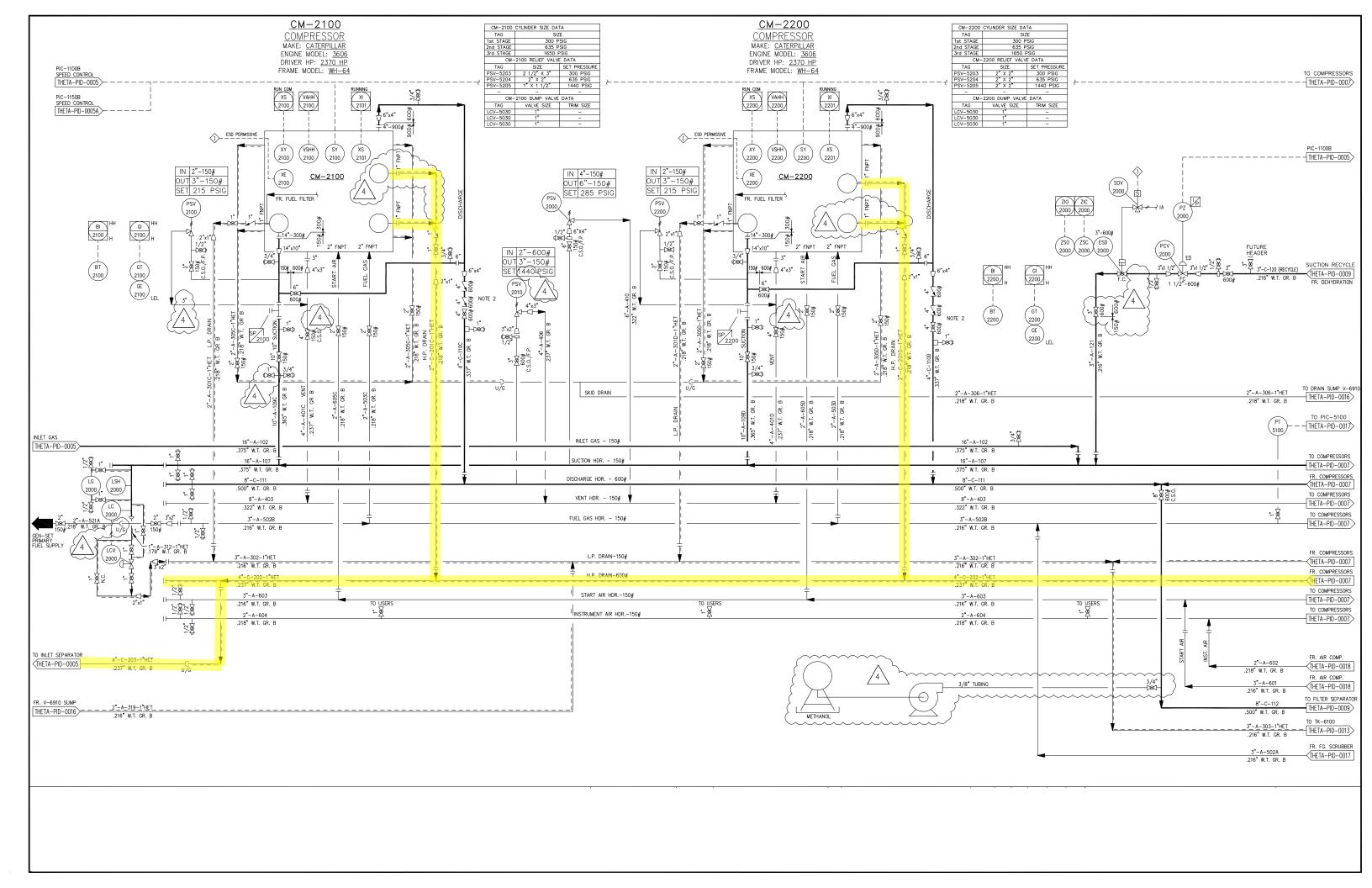
Leakage tight at 10% below set pressure

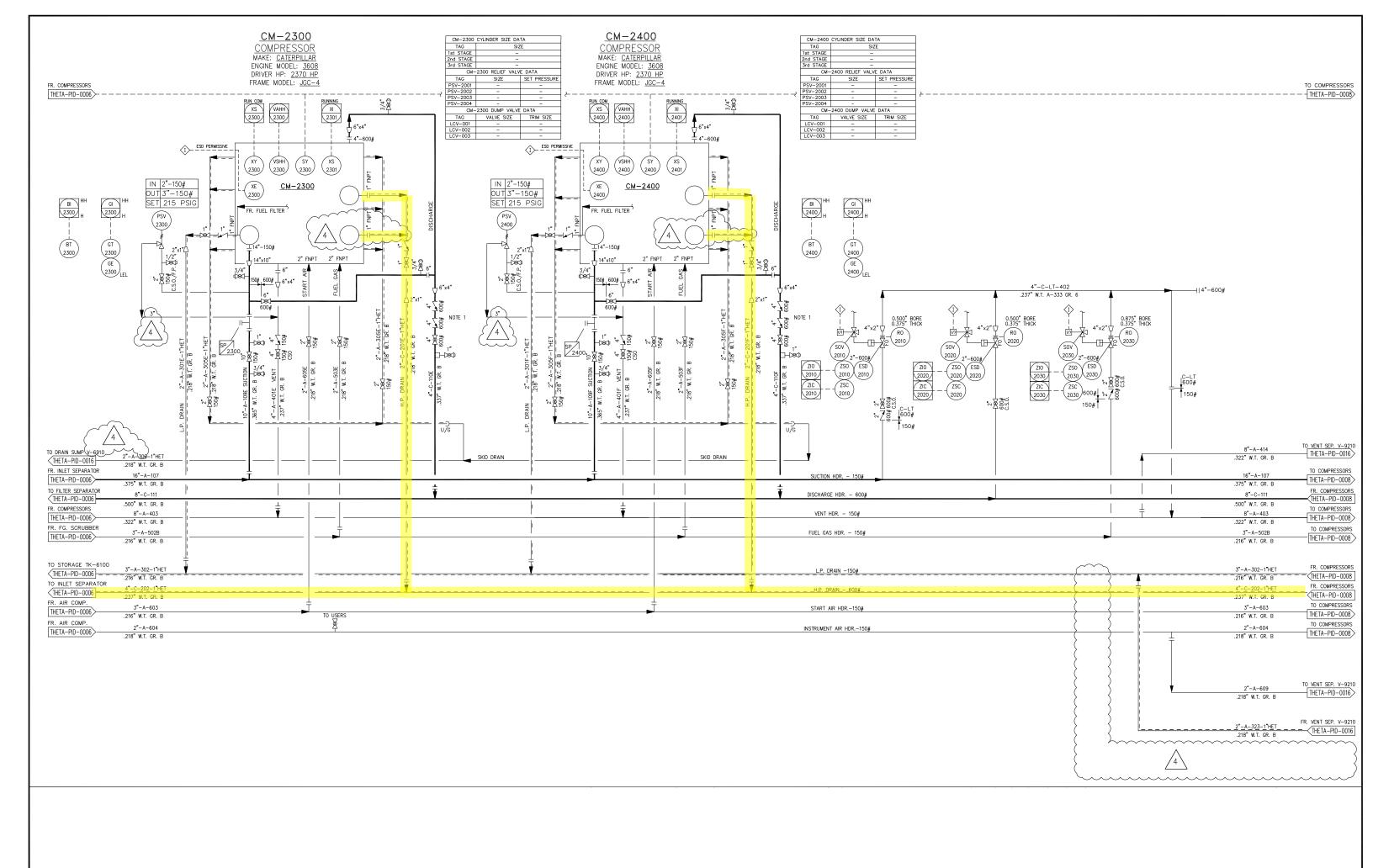

fise faislon

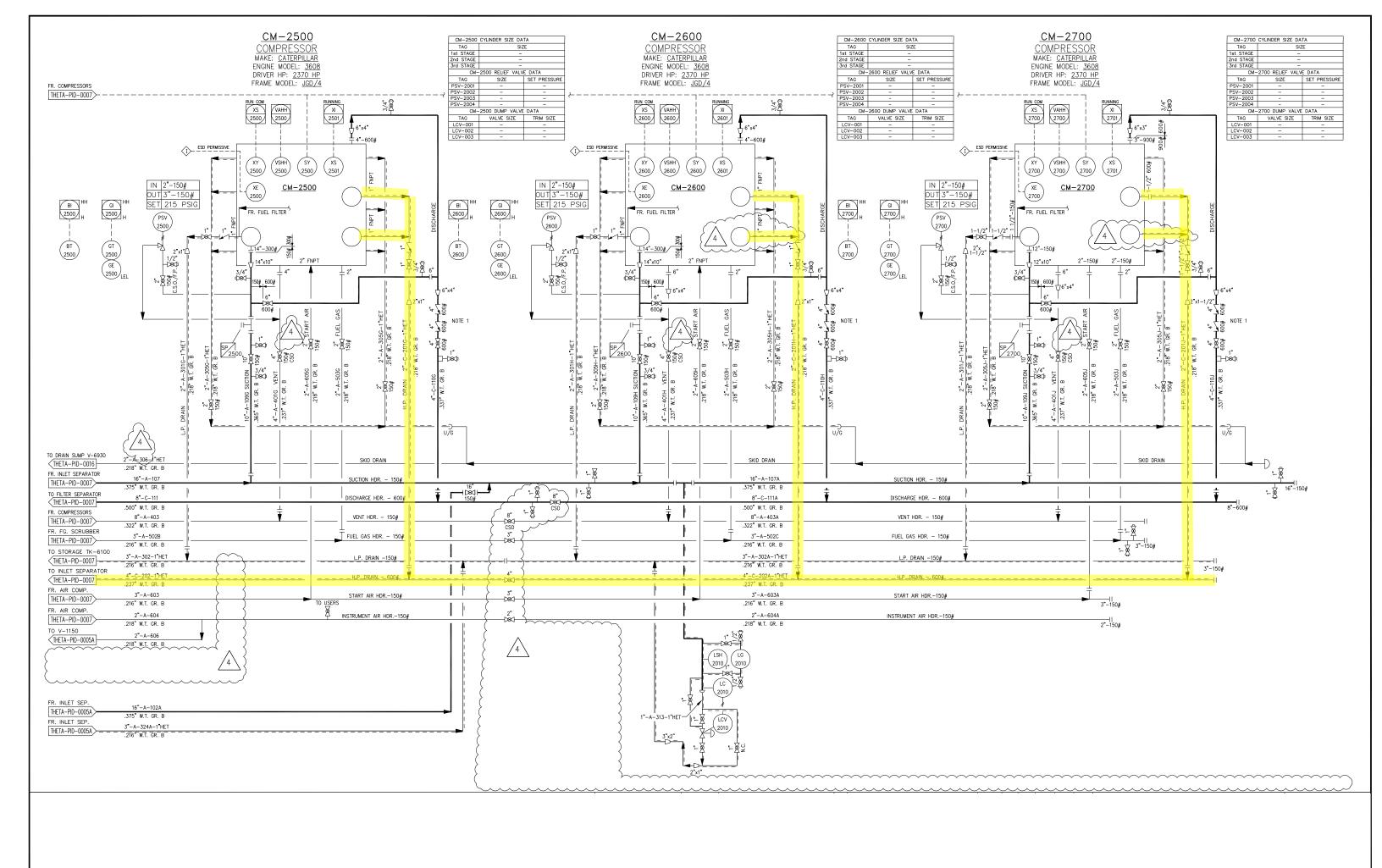
This certifies that the valves purchased on the above sales order number were built per section VIII, Division 1 of ASME boiler and pressure vessel code as indicated by the UV on the nameplate.


11/13/2014

Certified Individual


Quality Control




V-1100

