Vapor Restriction Orifice

Vapor Restrict	lion Or	ifice																
Equipment Data:																		
EquipmentTagNum	bar	EqTag						Equip	man	сТур	x			EqType				
Drawing		Drawing					-8	MAW	Ptoto					MAWP	psi			
Description		Descriptio	'n					MAW	T:					MAWT	F	1		
Input Data:								Outp	out I	Data								
RO Tag Number:		ROTag				1		Beta:						Beta				
Upstream Pressure:			P1	psig				 Orific	e:Flo	w.C.:				Flow	<u></u>	10		
Gas:Түре:		GasType				1		Disch	arge	Cd:				Ca	ī			
Upstream:Pressure:	Basis:	P1Basis				1		Upstr	sam	Dens	ity:			rho	18/	tЗ	1	
Upstream:Temperat	ure:		T1	F				Upstr	sam	Z:				Z	,			
Dewpoint Vapor::::								Upstr	eam	Idea	Cp/C	v:		k1				
Set Pressure:		·	SetP	psig				 Choke	id:					Choked	ī			
Allowable:Overpres	ura:	0	verP					Exit P	ress	unas				Chokef	psi	2		
Constant Back Press	ure	í –	P3	psig				Regu	ired	Mass	Rate			; iiredRateMass	18/	h		
Required Ratial Rate	Linite	Patallait						Requi	ired:	Rate	/dt:		-	: auiredRateMN	MM	ASC	FD	
Play 10	OTHER	Rateonic		Det	1			Requi	ired.	Air:Ra	te:		-	ouiredRateAi	scf	hai	ir:::	
ripa io.		PI	peiD	HU				 Relief	tuta	s.Etu				Flux	100		1117	
Unitide IU:		Orifi	celD	in.														
UseThermo																		
Thermo Package:	ThermoP	ackage			~	18										18		
StreamID			~															
Open Stream N	ew Stream]																
Relief Device Kd:			Kd															
Nozzle Sizing:	Sizing																	
Outlet:Plpe Sizing:	OutPipeS	izing																
			::::::													18		
	C	alculate	P	reviev	v) (Pr	int	III.	Clo	se								

Equipment Data:

The six fields under Equipment Data are specified on the Overpressure Scenario Form.

Input Data:

The form fields for inputs are blue and organized under the Scenario Input column. The are described below:

ROTag - Restriction orifice tag number typically from P&ID.

GasType – Generic description of gas such as fuel gas or field gas.

P1 – Pressure upstream of restiriction orifice. From most to least conservative: MAWP, PSV Set, PSHH, Max Operating

P1Basis – Description for choice of P1. PSV-100 Set Pressure, PSHH Setpoint, etc.

T1 – Temperature upstream of restriiction orifice for PT Flash Only. Calculated for PQ Flash.

Dewpoint Vapor – PQ flash with Q = 1.0 if checked. Otherwise, PT Flash based on T1.

SetP – PSV set pressure used to determine relief pressure.

OverP – Allowable overpressure typically 10% used to determine relief pressure.

P3 – Constant back pressure when PSV is closed.

RateUnit - Flow units for required relief rate that is reported back to the Overpressure Scenario Form.

PipeID = Pipe inner diameter

OrificeID = Orifice inner diameter

UseThermo – Use selected ThermoPackage if checked.

ThermoPackage – Thermo package used for properties. VMG (Symmetry) packages or REFPROP 10.0 from NIST

StreamID – The stream to be used for properties. A new stream can be added here. See <u>Stream Definition</u> Form.

Kd – Manufacturer's certified vapor Kd or 0.975 for API STD 520 default.

Nozzle Sizing – PSV sizing method: API STD 520 Vapor or API Numerical Integration (recommended when Z <= 0.8).

OutPipeSizing - Outlet pressure drop method: Adiabatic, Omega Method and Numerical Integration.

Calculation Method:

This form supports flow of a vapor through a restriction orifice under critical and sub-critical flow conditions and is based on equations found in Perry's Chemical Handbook 7th Edition.

Orifice Flow Coefficient

C, the orifice flow coefficient corrected for velocity of approach, assumes a high Reynolds number and is based on a set $C_d = 0.62$. It is calculated from C_d based on the following Crane 410 equation where β is the ratio of the orifice inner diameter to the pipe inner diameter.

$$C = \frac{C_d}{\sqrt{1-6^4}}$$

The critical downstream gauge pressure that results in choked flow is determined based on Equation 6-119 from Perry's Handbook.

$$P_{choked} = (P_1 + P_{atm}) \cdot \left(\frac{2}{(k_1 + 1)}\right)^{\left(\frac{k_1}{k_1 - 1}\right)} - P_{atm}$$

Where:

P1 – Pressure upstream of orifice. From most to least conservative: MAWP, PSV Set, PSHH, Max Operating

k1 – Ideal Cp/Cv at upstream temperature

If P_{choked} is higher than the downstream relief pressure (P_2) then the flow is choked and the Mach Number (M_1) = 1.0, otherwise the flow is not choked and M_1 is determined by rearranging equation 6-115 and solving for M_1 based on the actual downstream pressure (P_2).

$$M_1 = \left(\left(\frac{(P_1 + P_{atm})}{(P_2 + P_{atm})} \right)^{\left(\frac{k_1 - 1}{k_1}\right)} - 1 \right) \frac{2}{k_1 - 1}$$

P2 – Downstream relief pressure equal to SetP · (1 + OverP)

The vapor flux through the orifice is given by Equation 6-122 from Perry's Handbook with M_1 set to 1.0 if the flow is found to be choked per above.

$$G = (P_1 + P_{atm}) \cdot 144 \cdot \sqrt{\frac{k_1 M W g_c}{Z_1 R T_1}} \left(\frac{M_1}{\left(1 + \frac{k_1 - 1}{2} {M_1}^2\right)}\right)^{\left(\frac{k_1 + 1}{2(k_1 - 1)}\right)}$$

Where:

G = Mass Flux lb_m/ft²/sec

MW = Vapor molecular weight

R = Universal Gas Constant 1,545 lb_f/ft² · ft³/lbmole · °R

- g_c = Universal Gravitational Constant 32.174 $lb_m \cdot ft/lb_f \cdot sec^2$
- T1 Temperature upstream of restriction orifice for PT Flash Only. Calculated for PQ Flash.
- Z1 Upstream compressibility

The mass flow rate can then be determined based on the orifice area and flow coefficient C.

 $W = G \cdot A \cdot C \cdot 3,600$ W = Mass Flowrate lb/hr

A = Orifice Area ft²

C = Orifice Flow Coefficient

Scenario Output Data:

The form fields for scenario-specific outputs are organized under the Scenario Output column. These are described below:

Beta - Ratio of orifice to pipe inner diameter (OrificeID / PipeID)
FlowC - Orifice coefficient corrected for velocity of approach (set to 0.6)
Cd - Orifice flow coefficient
rho1 - Upstream density in lb/ft3 typically from thermo engine.
Z1 - Upstream compressibility typically from thermo engine.
K1 - Upstream ideal C_p/C_v typically from thermo engine.
Choked - Yes for critical flow, no for subcritical flow
ChokeP - Calculated choke pressure
RequiredRateMass - RequiredRateCv + AdditionalFlow converted to lb/hr, if necessary.
RequiredRateAir - RequiredRateCv + AdditionalFlow converted to scfh air.
Flux2 - RequiredRateMass · RequiredArea * 144 / 3600

Scenario Calculation Results:

The form fields for overall scenario results are organized in the Scenario Calculation Results Section. These outputs are typical of most of the scenario calculations and are detailed under Typical Scenario Calculation Results.

QA/QC Benchmarks:

This Perry's Handbook method was benchmarked against the <u>Orifice Numerical Integration</u> Method. Each calculation method was also checked against an internally developed Excel spreadsheet. The calculation is based on a 0.75" RO installed in 2" Sch 80 pipe flanges. A typical residue gas composition was used with upstream conditions or 800 psig and 120 F and the downstream relief pressure of 165 psig.

Vapor Restriction Orifice RO-1000

Equipment Data:

Equipment Tag:	V-1000	Туре:	Pressure Vessel
Drawing:	PID-1000	MAWP:	150 psig
Description:	Slug Catcher	MAWT:	250 F

Scenario Description:

The maximum upstream pressure is 800 psig as dictated by the upstream MAWP and associated pressure relief which can exceed the design pressure of 150 psig. As such, inadvertent opening of the bypass around PCV-1000 could result in overpressure. The required relief rate is limited by RO-1000 with a 3/4" ID and was based on the recovery residue gas compostion at 800 psig and 120 F upstream of bypass with the relief pressure of 165 psig downstream.

Scenario Results Summary:

Required Rate:	13,241	lb/hr	Device Choke Pressure:	83.8	psig
Actual Capacity:	30,665	lb/hr	Outlet Temperature:	75.9	F
Required Area:	1.232	in2	Outlet Mass Quality:	1.000	
Actual Area:	2.853	in2	Outlet Density:	0.043	lb/ft3
Relief Pressure:	165.0	psig	Outlet Ideal Cp/Cv:	1.288	
Relief Temperature:	86.2	F	Outlet Viscosity:	0.011	сР
Relief MW:	16.74		Inlet Non-Recoverable dP:	3.5	psi
Relief Mass Quality:	1.000		Inlet dP % Set:	2.3	% Set
Relief Density:	0.528	lb/ft3	Built-Up Back Pressure:	31.6	psig
Relief SG:	0.577		Built-Up Back P % Set:	21.1	% Set
Relief Z:	0.973		Total Back Pressure:	31.6	psig
Relief Ideal Cp/Cv:	1.286		Total Back P % Set:	21.1	% Set
Relief Viscosity:	0.011	сР	Reaction Force:	502	lbf

Atmospheric Dispersion Screening (Constant Back Pressure = 0 and Hydrocarbons Only):

Tail Pipe Exit Diameter:		in
Reset % Capacity:	0.0	%
Exit Minimum RE:		
Horizontal Distance (x):	0	ft
Sonic Velocity:		fps
Exit Quality Acceptable:		
Lighter than Air:		
Flammable::		
Toxic:		
Dispersion Screening Pass:		

	<u>Actual</u>	<u>Reseat</u>	
Exit RE:			
Exit Velocity:			fps
Exit/Wind Velocity:	0.0	0.0	
Minimum Exit Velocity:	0.0	0.0	fps
Horizontal Distance (x):			ft

Vapor Restriction Orifice RO-1000

Equipment Data:

Equipment Tag:	V-1000	Туре:	Pressure Vessel
Drawing:	PID-1000	MAWP:	150 psig
Description:	Slug Catcher	MAWT:	250 F

Scenario Input Data:

RO Tag Number:		RO-1000		
Gas Type:		Residue Gas		
Upstream Pressure:		800	psig	
Upstream Pressure B	asis:	MAWP		
Upstream Temperatu	ire:	120	F	
Dewpoint Vapor:				
Set Pressure:		150	psig	
Allowable Overpressure:		10.0%		
Constant Back Pressure:		0.0	psig	
Pipe Inner Diameter:		1.939	in	
Orifice Inner Diamete	er:	0.75	in	
Thermodynamics Ena	bled:	\checkmark		
Thermo Package:	Advanced	Peng-Robinson		
Relief Device Kd:		0.975		
Nozzle Sizing:	API 520 Va	API 520 Vapor		
Outlet Pipe Sizing:	Adiabatic			
Notes:				

Scenario Output Data:

Beta:	0.387	
Orifice Flow C:	0.6	
Discharge Cd:	0.59	
Upstream Z:	0.912	
Upstream Density:	2.404	lb/ft3
Choked:	Yes	
Choke Pressure:	433	psig
Mach Number:	1	
Required Mass Rate.:	13240.9	lb/hr
Required Rate Std Vol:	7.2	MMSCFD
Required Air Rate:	233733.3	scfh air
Required Mass Flux:	429.9	lb/sec/ft2

1			
1			
1			

Vapor Restriction Orifice RO-1000

Equipment Data:					
Equipment Tag:	V-1000	Туре:	Pressure Vessel		
Drawing:	PID-1000	MAWP:	150 psig		
Description:	Slug Catcher	MAWT:	250 F		

Relief Stream Composition:

Stream Description:	Residue Gas
Component	Mole Fraction
methane	0.9577
ethane	0.0320
propane	0.0008
butane	
isobutane	
pentane	
isopentane	
hexane	
heptane	
octane	
nonane	
decane	
carbon dioxide	0.0070
nitrogen	0.0025
methanol	
water	

Orifice Flow - Numerical Integration

Equipment Data:					
Equipment Tag:	V-1000	Туре:	Pressure Vessel		
Drawing:	PID-1000	MAWP:	150 psig		
Description:	Slug Catcher	MAWT:	250 F		

Scenario Description:

The maximum upstream pressure is 800 psig as dictated by the upstream MAWP and associated pressure relief which can exceed the design pressure of 150 psig. As such, inadvertent opening of the bypass around PCV-1000 could result in overpressure. The required relief rate is limitied by RO-1000 with a 3/4" ID and was based on the recovery residue gas compostion at 800 psig and 120 F upstream of bypass with the relief pressure of 165 psig downstream.

Scenario Results Summary:

Required Rate:	13823.3	lb/hr	Device Choke Pressure:	82.5	psig
Actual Capacity:	30664.9	lb/hr	Outlet Temperature:	75.9	F
Required Area:	1.284	in2	Outlet Mass Quality:	1.000	
Actual Area:	2.853	in2	Outlet Density:	0.043	lb/ft3
Relief Pressure:	165.0	psig	Outlet Ideal Cp/Cv:	1.288	
Relief Temperature:	86.2	F	Outlet Viscosity:	0.011	сР
Relief Mass Quality:	1.000		Inlet Non-Recoverble dP:	3.5	psi
Relief Density:	0.53	lb/ft3	Inlet dP % Set:	2.3	% Set
Relief MW:	16.74		Built-Up Back Pressure:	31.1	psig
Relief Viscosity:	0.011	сР	Built-Up Back P % Set:	20.7	% Set
			Total Back Pressure:	31.1	psig
			Total Back P % Set:	20.7	% Set
			Reaction Force:	502	lbf

Orifice Flow - Numerical Integration

Equipment Data:

Equipment Tag:	V-1000	Туре:	Pressure Vessel
Drawing:	PID-1000	MAWP:	150 psig
Description:	Slug Catcher	MAWT:	250 F

Output Data:

Input Data:

RO Tag:	RO-1000		Beta:	0.387	
Gas Type:	Residue Gas		Orifice Flow C:	0.627	
Upstream Pressure:	800	psig	Discharge Cd:	0.620	
Upstream Pressure Basis:	MAWP		Upstream Density:	2.40	lb/ft3
Flash Type:	PT		Upstream Z:	0.91	
Upstream Mass Quality:	1.000		Upstream Ideal Cp/Cv:	1.28	
Upstream Temperature:	120.0	F	Upstream Viscosity:	0.012	cP
Set Pressure:	150	psig	Choked:	Yes	
Allowable Overpressure:	10.00%		Exit Pressure (P2 for Sizing):	425.4	psig
Constant Back Pressure:	0	psig	Orifice Mass Flux:	1251.6	lb/sec/ft2
Pressure Increment:	0.01		Required Mass Rate:	13,823.3	lb/hr
Pipe ID:	1.939	in	Relief Kd:	0.975	
Orifice ID:	0.75	in	Relief Mass Flux:	430.6	lb/sec/ft2
Relief Device Liquid Kd:	0.650				
Relief Device Vapor Kd:	0.975				
Thermodynamic Package:	Advanced_Peng-	Robinson			
Nozzle Sizing:	Numerical Integration				
Outlet Pipe Sizing:	Numerical Integr	ation			
Notes:					

Orifice Flow - Numerical Integration

Equipment Data	a:			
Equipment Tag:	V-1000	Туре:	Pressure	Vessel
Drawing:	PID-1000	MAWP:	150	psig
Description:	Slug Catcher	MAWT:	250	F
Relief Stream C	omposition:			
Stream Descrip	tion: Residue Gas			
Component	Mole Fraction			
carbon dioxide	1.0000	_		
nitrogen		-		
methane		-		
ethane		_		
propane		_		
isobutane		_		
butane		-		
isopentane		-		
pentane		-		
hexane		_		
heptane		_		
octane		_		
nonane		-		
decane		-		
methanol		-		
water		-		
		_		
		_		
		_		
		_		
		-		
		_		
		-		

Vapor Restriction Orifice Perry's 7th Edition 6-118

Inputs				
Patm	14.7	psia		
K ₁	1.279			
MW	16.74	lb/lbmole		
T ₁	120	F		
Z ₁	0.912			
P ₁	800	psig		
P ₂	150	psig		
Orifice ID	0.75	in		
С	0.6			
g _c	32.174	lb _m ft / lb _f sec ²		
R	1545	lb _f ft / lbmole °R		
Outputs				
Rho1	2.40	lb/ft3		
P ₁ /P ₂	4.947			
R _c	0.5496			
P _{choked}	433.0	psig		
Critical Flow	Yes			
M ₁	1.00			
Orifice Area	0.0031	ft ²		
G	1,998	$lb_m / ft^2 / sec$		
W	13,241	lb/hr		