Vapor Control Valve Failure Open

Vapor Control Valve F									
Equipment Data:									
Equipment Tag Number:	EqTag			Equipman	сТуре:	EqType			
Drawing:	Drawing		<u> </u>	MAWP		MAWP	psig	1	
Description:	Description		<u> </u>	MAWT:		MAWT	F]	
Scenario Input Data:				Scenario	Output Data:				
Control Valve Tag:	CVTag			Fk:		Fk			
Gas:Туре:	GasType			K1 Inter Pi	ping Resistance:	Kinlet			
Upstream Pressure:	P1	psig		:	Piping Resistance:	Koutlet			
Upstream Pressure Basis:	P1Basis			:	Iping Bernoulli:	Kbinlet			
Upstream:Temperature:	T1	F		:	Piping Bernoulli:	Kboutlet			
Dewpoint Vapor:				Fp:		Fp			
Set Pressure:	SetP	psig		dP/P1 Act	uat:	dPP1Actual			
Allowable:Overpressura:	OverP			dP/P1 Crit	cat:	dPP1Critical			
Constant Back Pressure:	P3	psig		Y:		Y			
Required Relief Rate Units:	RateUnit 🧹			Upstream	Density:	Rho1	15/	t3	
Sizing Method	SizingMethod			Upstream		Z1			
Cv:(Traditional Calculated):	Cv				Ideal Cp/Cv:	k1			
Kt (Cf for Kimray):	Xt			Control Va	Ive:Flow:	equiredRateCV	Rate	aUni	it
Cg (Traditional Only)	Cg			Required	Mass:Rate:	iiredRateMass	lb/h	r::::	
C1 (Traditinal Only):	C1			Required	Rate:Std Vol:	JuiredRateMM	MM	ISCF	D
Control Valve Inner Diameter:	d	in		Required	Air:Rate:	quiredRateAir	scfh	air:	
inlet:Pipe Inner Diamaten:	D1	in		ReliefMas	s:Flux:	Flux2	18/	ec/	ft2
Outlet:Pipe Inner Diamaten::::	D2	in							
Additional Flow:	AdditionalFlow	RateUnit							
Use Tharmo									
Thermo Package: ThermoPa	ckage	~]	<u> </u>					
StreamID	~								
Open Stream New Stream									
Relief Device Kd:	Kd								
Nozzle Sizing: Sizing	1	~							
Outlet:Plpe Sizing: OutPipeSiz	ting	✓							
	Calculate	Previe	Transing a	Print	Close	4			

Equipment Data:

The six fields under Equipment Data are specified on the Overpressure Scenario Form.

Input Data:

The form fields for inputs are blue and organized under the Scenario Input column. The are described below:

CVTag – Control valve or regulator tag number typically from P&ID or other description such as LCV-100 1" Bypass.

GasType – Generic description of gas such as fuel gas or field gas.

P1 – Pressure at control valve inlet. From most to least conservative: MAWP, PSV Set, PSHH, Max Operating

P1Basis – Description for choice of P1. PSV-100 Set Pressure, PSHH Setpoint, etc.

T1 – Temperature at control valve inlet for PT Flash Only. Calculated for PQ Flash.

Dewpoint Vapor – PQ flash with Q = 1.0 if checked. Otherwise, PT Flash based on T1.

SetP – PSV set pressure used to determine relief pressure.

OverP – Allowable overpressure typically 10% used to determine relief pressure.

P3 – Constant back pressure when PSV is closed.

RateUnit – Flow units for required relief rate that is reported back to the Overpressure Scenario Form.

Sizing Method – Universal, Traditional Fisher and Kimray equations are available.

Cv – Manufacturer's published Cv used for IEC and Kimray equations.

Xt - Manufacturer's published Xt used for IEC or Cf used for Kimray. 1.0 is conservative if unknown.

Cg – Manufacturer's published Cg used for Fisher equations only.

C1 - Manufacturer's published C1 used for Fisher equations only.

d = Control valve or regulator inner diameter

D1 = Inlet pipe inner diameter

D2 = outlet pipe inner diameter

AdditionalFlow – Any extra flow to be added to control valve flow such as through a bypass. Enter negative value to take credit for outflow downstream

UseThermo – Use selected ThermoPackage if checked.

ThermoPackage – Thermo package used for properties. VMG (Symmetry) packages or REFPROP 10.0 from NIST

StreamID – The stream to be used for properties. A new stream can be added here. See <u>Stream Definition</u> Form.

Kd – Manufacturer's certified vapor Kd or 0.975 for API STD 520 default.

Nozzle Sizing – PSV sizing method: API STD 520 Vapor or API Numerical Integration (recommended when Z <= 0.8).

OutPipeSizing – Outlet pressure drop method: Adiabatic, Omega Method and Numerical Integration.

Calculation Method:

This form supports control valve vapor and gas capacity calculations based on the IEC, Original Fisher and Kimray equations as described below.

Universal Method IEC Equations

The following IEC equations are from the Fisher Control Valve Handbook 6th Edition Section 5.

Section 5.8.1

Note that Fp can conservatively be assumed to be 1.0 by setting the inlet and outlet pipe ID equal to the nominal pipe size of the control valve or regulator. The $_1$ and $_2$ subscripts are replaced with inlet and outlet on the form.

$$K_{1} = 0.5 \left(1 - \frac{d^{2}}{D_{1}^{2}} \right)^{2}$$
$$K_{2} = 1.0 \left(1 - \frac{d^{2}}{D_{2}^{2}} \right)^{2}$$
$$K_{B1} = 1 - \left(\frac{d}{D_{1}} \right)^{4}$$
$$K_{2} = 1.0 \left(1 - \frac{d^{2}}{D_{2}^{2}} \right)^{2}$$

$$\Sigma K = K_1 + K_2 + K_{B1} - K_{B2}$$

$$F_P = \left[1 + \frac{\Sigma K}{N_2} \left(\frac{C_v}{d^2}\right)^2\right]^{-1/2}$$

Where:

- d = Control valve ID (inches)
- D_1 = Inlet pipe ID (inches)
- D_2 = Inlet pipe ID (inches)
- C_v = Valve C_v from Manufacturer
- N₂ = Unit conversion constant (890) from Fisher

Section 5.9.1

$$x_{TP} = \frac{\frac{x_T}{F_P^2}}{1 + \frac{x_T(K_1 + K_{B1})}{N_5} \left(\frac{C_v}{d^2}\right)^2}$$

Where:

x_T = Valve x_T from Manufacturer, 1.0 is conservative if unknown

N₅ = Unit conversion constant (1,000) from Fisher

$$F_{\gamma} = \frac{\gamma}{1.4}$$

Where:

y = k1, Ideal Specific Heat Ratio $x_{choked} = F_{y} \cdot x_{TP}$ $x = \Delta P / (P_1 + P_{atm})$ $\Delta P = P_1 - P_2$ $x_{sizing} = \text{Lesser of x and } x_{choked}$ $Y = 1 - x_{sizing} / 3 \cdot x_{choked}$ $w = (Cv \cdot N_8 \cdot F_P \cdot P_1 Y)^2 \cdot x_{sizing} \cdot M / (T_1 + 460) / Z_1$ Where: $C_v = \text{Valve Cv from Manufacturer}$ $N_8 = \text{Unit conversion constant (19.3) from Fisher}$ M = Vapor Molecular WeightP1 = Procesure at control value inlat. From meant the

P1 – Pressure at control valve inlet. From most to least conservative: MAWP, PSV Set, PSHH, Max Operating

T₁ = Temperature at control valve inlet for PT Flash Only. Calculated for PQ Flash.

Z₁ = Compressibility at control valve inlet.

Traditional Method Fisher Equations

The following equations are taken from the Fisher Control Valve Handbook and utilize C_g and C_1 in lieu of C_v and X_T . The F_p factor is calculated in the same manner as the Universal Method with the C_v being calculated ($C_v = C_g \cdot C_1$)

$$Q_{\text{lbfur}} = 1.06 \sqrt{d_1 P_1} C_g \text{SIN} \left(\frac{3417}{C_1}\right) \left(\sqrt{\frac{\Delta P}{P_1}}\right) \text{Deg}$$

Where:

d₁ = Upstream density (lb/ft³)

P1 = Pressure at control valve inlet. From most to least conservative: MAWP, PSV Set, PSHH, Max Operating

C_g = Valve C_g from Manufacturer

 C_1 = Valve C_1 from Manufacturer

 $\Delta P = P_1 - P_2$, if sine term < 90°, otherwise set sine term = 90° and solve for ΔP

Kimray Sizing Equations

The following equations are taken from the documentation for Kimray's Kimsize Gas Sizing documentation. The C_{t} factor is similar to x_{t} .

$$y = \frac{1.63}{C_f} \sqrt{\frac{\Delta P}{P_1}} \le 1.50$$

Where:

P1 = Pressure at control valve inlet. From most to least conservative: MAWP, PSV Set, PSHH, Max Operating

 C_f = Valve C_f from Manufacturer

 $\Delta P = P_1 - P_2$, if y \leq 1.50, otherwise set y = 1.5 and solve for ΔP

$$Q = \frac{834C_v C_f P_1 (y - 0.148y^3)}{41666 \sqrt{GT}}$$

 C_v = Valve C_v from Manufacturer

T = Temperature at control valve inlet (T_1 + 460° F) for PT Flash Only. Calculated for PQ Flash.

G = Vapor Specific Gravity Relative to Air

Scenario Output Data:

The form fields for scenario-specific outputs are organized under the Scenario Output column. These are described below:

 F_k (Universal Calculation Method Only) - See calculation method for $F_{\gamma}.$

Kinlet - Inlet pipe resistance factor

Koutlet - Outlet pipe resistance factor

Kbinlet - Inlet pipe Bernoulli factor

Kboutlet - Outlet pipe Bernoulli factor

 F_p - Piping geometry factor. Conservatively can be set to 1.0 by setting D1 and D2 = d.

dpP1Actual - $(P_1 - P_2) / ((P_1 + P_{atm}))$

dpP1Critical – See Calculation Methods for determination of critical flow pressure like x_{choked} for Universal Method.

Y (Universal and Kimray Methods) Expansion Factor – See calculation methods.

rho1 - Upstream density in lb/ft3 typically from thermo engine.

Z1 - Upstream compressibility typically from thermo engine.

K1 - Upstream ideal C_p/C_v typically from thermo engine.

RequiredRateCv - Calculated flow through control valve or regulator in selected rate units.

RequiredRateMass - RequiredRateCv + AdditionalFlow converted to lb/hr, if necessary.

RequiredRateMM - RequiredRateCv + AdditionalFlow converted to MMSCFD, if necessary.

RequiredRateAir - RequiredRateCv + AdditionalFlow converted to scfh air.

Flux2 - RequiredRateMass · RequiredArea * 144 / 3600

Scenario Calculation Results:

The form fields for overall scenario results are organized in the Scenario Calculation Results Section. These outputs are typical of most of the scenario calculations and are detailed under Typical Scenario Calculation Results.

QA/QC Benchmarks:

The Universal Method was benchmarked against the Fisher Specification Manager using a 1" Fisher D with ½" m-form trim and the Kimray Method was benchmarked against Kimsize using a 1" Kimray EAC3P which has ½" =% trim. The Traditional Method was compared to the Universal Method using a typical, assumed C₁. Each calculation method was also checked against an internally developed Excel spreadsheet. The calculation is based on full open flow coefficients with upstream conditions or 800 psig and 120 F and the downstream relief pressure of 165 psig. The relief valve is a 3K4 pilot-operated with typical inlet and outlet piping. Device capacity was determined based on the API Vapor Equation, Area and Kd.

Equipment Data:					
Equipment Tag:	V-1000	Туре:	Pressure Vessel		
Drawing:	PID-1000	MAWP:	150 psig		
Description:	Slug Catcher	MAWT:	250 F		

Scenario Description:

TThe maximum upstream pressure is 800 psig as dictated by the set point of PSHH-1000. As such, a failure open of PCV-1000 could result in overpressure and the required relief rate was based on the recovery residue gas compostion at 800 psig and 120 F upstream of control valve with the relief pressure of 165 psig downstream. Flow coefficients were based on a 1" Fisher D4 with 1/2" m-form trim and the control valve is installed in a 2" line.

Scenario Calculation Results:

Required Rate:	9,399.1	lb/hr	Device Choke Pressure:	83.7	psig
Actual Capacity:	19,807.6	lb/hr	Outlet Temperature:	75.9	F
Required Area:	0.872	in2	Outlet Mass Quality:	1.000	
Actual Area:	1.838	in2	Outlet Density:	0.043	lb/ft3
Relief Pressure:	165.0	psig	Outlet Ideal Cp/Cv:	1.290	
Relief Temperature:	86.2	F	Outlet Viscosity:	0.011	сР
Relief MW:	16.74		Inlet Non-Recoverble dP:	1.4	psi
Relief Mass Quality:	0.000		Inlet dP % Set:	1.0	% Set
Relief Density:	0.529	lb/ft3	Built-Up Back Pressure:	11.1	psig
Relief SG:	0.577		Built-Up Back P % Set:	7.4	% Set
Relief Z:	0.970		Total Back Pressure:	11.1	psig
Relief Ideal Cp/Cv:	1.290		Total Back P % Set:	7.4	% Set
Relief Viscosity:	0.011	сР	Reaction Force:	258	lbf

Equipment Data:

Equipment Tag:	V-1000	Туре:	Pressure Vessel
Drawing:	PID-1000	MAWP:	150 psig
Description:	Slug Catcher	MAWT:	250 F

Scenario Input Data:

Control Valve Tag:		PCV-1000	
Gas Type:		Residue Gas	
Upstream Pressure:		800	psig
Upstream Pressure Ba	asis:	PSHH-1000 Set P	Point
Upstream Temperatu	re:	120	F
Dewpoint Vapor:			
Set Pressure:		150	psig
Allowable Overpressu	ire:	10.0%	
Constant Back Pressu	re:	0	psig
Required Relief Rate	Units:	lb/hr	
Sizing Method		Universal	
Cv:		6.51	
Xt (Cf for Kimray):		0.549	
C1:		0	
Cg:		0	
Control Valve ID:		0.957	in
Inlet Pipe ID:		1.939	in
Outlet Pipe ID:		1.939	in
Additional Flow:		1,000.0	lb/hr
Use Thermo			
Thermo Package:	Advanced	Peng-Robinson	
Relief Device Kd:		0.975	
Nozzle Sizing:	API 520 Va	ipor	
Outlet Pipe Sizing:	Omega Me	ethod	
Notes:			

Scenario Output Data:		
Fk:	0.91	
K1 Inlet Piping Resistance:	0.29	
K2 Outlet Piping Resistance:	0.57	
K1 Inlet Piping Bernoulli:	0.94	
K2 Outlet Piping Bernoulli:	0.94	
Fp:	0.976	
dP/P1 Actual:	0.779	
dP/P1 Critical:	0.502	
Y:	0.667	
Upstream Density:	2.403	lb/ft3
Upstream Z:	0.912	
Upstream Ideal Cp/Cv:	1.279	
Control Valve Flow:	8,399.1	lb/hr
Required Mass Rate:	9,399.1	lb/hr
Required Rate Std Vol:	5.1	MMSCFD
Required Air Rate:	165,918.8	scfh air
Relief Mass Flux:	431.1	lb/sec/ft2

Ν

Gas Plant XYZ

2024-1000

Equipment Data:					
Equipment Tag:	V-1000	Туре:	Pressure Vessel		
Drawing:	PID-1000	MAWP:	150 psig		
Description:	Slug Catcher	MAWT:	250 F		

Relief Stream Composition:

Stream Description:	Residue Gas
Component	Mole Fraction
methane	0.9577
ethane	0.0320
propane	0.0008
butane	
isobutane	
pentane	
isopentane	
hexane	
heptane	
octane	
nonane	
decane	
carbon dioxide	0.0070
nitrogen	0.0025
methanol	
water	

FISHER

Valve Sizing Calculation

Customer:					
Fax:		Phone:			
Contact:		Contact	•		
Item: 1 Qty: 1		PO Nun	nber:		
Tags: PCV-1000 Unive	ersal	Project:	PC	V-1000	
Description: 1 Inch D		P&ID N			
Service Description: PCV-1000 Failu		Line Nu			
Sizing Type: Ideal Gas Flow is Turbule			Noise is IECAerodyr		v is Mass
Variable Name	Units	Minimum- 0	Normal- 1	Maximum- 2	Others- 3
Gas	. –		Residue Gas		
Temperature (T1)	•	4 4 4 0 0 0 0	120.0000		
Inlet Pressure (P1)		1.440.000	800.000		
Pressure Change (dP)			635.000		
Mass flow rate (w) Pressure Drop Ratio Factor (Xt)	lb/h	0.650	8400.000 0.549		
Pressure Recovery Factor (FI)		0.900	0.840		
Valve Style Modifier (Fd)		0.350	0.560		
Atmospheric Pressure	psi	14.69	14.69		
Kinematic Viscosity (Nu)		0.00001	0.31157		
Pipe Size Up		2	2		
Pipe Schedule Up		80	80		
Pipe Size Down	in	2	2		
Pipe Schedule Down		80	80		
Nominal Valve Diameter (dv)	in	1	1		
Specific heats ratio (gamma)			1.279		
Molecular weight /Specific gravity	М		16.740		
Valve/Trim			Globe/Angle		
Rn	ft	3.281	3.00		
	in2	0.201	0.719		
T2			86.0000		
	0				
Sizing Coefficient (Cv)			6.445		
Dynamic Viscosity (Mu)			0.012		
Pipe Outside Diam. Up		2.375			
Pipe Outside Diam. Down		2.375			
Gas Flow Rate (Qg) Inlet Compressibility Factor (Z1)	scin	1.000	190309.745 0.912		
Whisper III Trim Level		1.000	0.912		
LpAeTrim1m	dB(A)		88		
LpAeOutlet1m			74		
LpAeValve1m			89		
LpAeValveRn			89		
Inlet fluid density (Rho1)			2.404		
M1 Pipe			0.032		
Mo Valve			0.613		
M2 Pipe			0.149		
Outlet fluid density (Rho2) Upstream Fluid Velocity (V1)			0.530 47.325		
Downstream Fluid Velocity (V1)			214.824		
Z2	143	1.000	0.970		
			0.010		
Warnings					
Ĵ		A value for			
		variable 'Pressure			
		differential' must			
		be provided.			
		Calculate for			
		variable 'Flow			
		Coefficient (Cv)'			
		failed.			

D

Micro	Micro-Form - Flow Up																	
Valve Size,		ort neter		otal avel	Flow Coeffi-		Valve Opening—Percent of Total Travel						FL ⁽¹⁾					
NPS	mm	Inches	mm	Inches	cient	10	20	30	40	50	60	70	80	90	100			
					Cv	0.070	0.115	0.164	0.224	0.315	0.450	0.641	0.921	1.28	1.66	.87		
	6.4	114	10	2/4	Kv	0.061	0.099	0.142	0.194	0.272	0.389	0.554	0.797	1.11	1.44			
	6.4	1/4	19	3/4	XT	0.783	0.783	0.744	0.691	0.625	0.614	0.608	0.611	0.610	0.611			
							Fd	0.12	0.14	0.17	0.20	0.24	0.29	0.35	0.43	0.55	0.68	
		î	19		Cv	0.155	0.260	0.407	0.596	0.858	1.21	1.65	2.22	3.00	4.03	.84		
	9.5	3/8 1		3/4	Kv	0.134	0.225	0.352	0.516	0.742	1.05	1.43	1.92	2.60	3.49			
1					XT	0.625	0.535	0.534	0.539	0.535	0.535	0.538	0.534	0.537	0.536			
1	12.7				Cv	0.273	0.436	0.631	0.911	1.30	1.84	2.57	3.65	5.08	6.51	.84		
		1/2	19	3/4	Kv	0.236	0.377	0.546	0.788	1.13	1.59	2.22	3.16	4.39	5.63			
	12.7	1/2	19	5/4	XT	0.673	0.644	0.641	0.590	0.592	0.587	0.586	0.557	0.523	0.549			
					Fd	0.11	0.13	0.16	0.19	0.23	0.27	0.33	0.40	0.48	0.56			
	10.1		19 3		Cv	0.483	0.775	1.25	1.97	2.89	4.13	5.87	8.16	10.9	12.3	.92		
		2/4		10	10	10	2/4	Kv	0.418	0.670	1.08	1.70	2.50	3.57	5.08	7.06	9.43	10.6
	19.1	3/4		3/4	XT	0.571	0.599	0.527	0.473	0.492	0.519	0.537	0.505	0.486	0.628			
					Fd	0.10	0.39	0.47	0.18	0.22	0.26	0.31	0.37	0.43	0.49			

PCV-1000 Failure Open - 1" Fisher D4, 1/2" m-form

Vapor Control Valve (Universal Method with Fp Input) Critical PSV Flow Only

User-Entered Inputs						
P ₁	800.0	psig				
P _{atm}	14.4	psia				
T ₁	120.0	F				
P ₂	165.0	psig				
C _v	6.51					
X _t	0.549					
F _p	0.976					
K _d	0.975					

Vapor Control Valve (Universal Method with Fp Calculation) Critical PSV Flow Only

User-Entered Inputs					
P ₁	800.0	psig			
P _{atm}	14.4	psia			
T ₁	120.0	F			
P ₂	165.0	psig			
Cv	6.510				
X _t	0.549				
K _d	0.975				
Valve d	0.957	in			
Inlet Pipe D ₁	1.939	in			
К1	0.286				
Kb ₁	0.941				
Outlet Pipe D ₂	1.939	in			
K ₂	0.572				
Kb ₂	0.941				
Fp	0.976				

	Thermo Inputs	
Kideal ₁	1.279	
Z ₁	0.912	
MW	16.74	lb/lbmole
T ₁	120.0	F
T ₂	86.2	F
Z ₂	0.973	
Kideal ₂	1.286	
	Results	
Fγ	0.913	
$F_{\gamma}X_{t}$	0.502	
х	0.780	
Y	0.667	
W _{cv}	8,392	lb/hr
WADDITIONAL	1,000	lb/hr
W _{REQUIRED}	9,392	lb/hr
C	345.7	
A _{req}	0.875	in ²

Thermo Inputs					
Kideal ₁	1.279				
Z ₁	0.912				
MW	16.74	lb/lbmole			
T ₁	120.0	F			
T ₂	86.2	F			
Z ₂	0.973				
Kideal ₂	1.286				
	Results				
Fγ	0.913				
X _{TP}	0.557				
$F_{\gamma}X_{TP}$ (x_{choked})	0.502				
X _{actual}	0.780				
P _{choked}	391.6	psig			
X _{sizing}	0.502				
Y	0.667				
W _{cv}	8,392	lb/hr			
WADDITIONAL	1,000	lb/hr			
W _{REQUIRED}	9,392	lb/hr			
С	345.7				
A _{req}	0.875	in ²			

Equipment Data:						
Equipment Tag:	V-1000	Туре:	Pressure Vessel			
Drawing:	PID-1000	MAWP:	150 psig			
Description:	Slug Catcher	MAWT:	250 F			

Scenario Description:

TThe maximum upstream pressure is 800 psig as dictated by the set point of PSHH-1000. As such, a failure open of PCV-1000 could result in overpressure and the required relief rate was based on the recovery residue gas compostion at 800 psig and 120 F upstream of control valve with the relief pressure of 165 psig downstream. Flow coefficients were based on a 1" Kimray with 1/2" =% trim and the control valve is installed in a 2" line.

Scenario Calculation Results:

Required Rate:	9,101.9	lb/hr	Device Choke Pressure:	83.8	psig
Actual Capacity:	19,755.4	lb/hr	Outlet Temperature:	75.9	F
Required Area:	0.847	in2	Outlet Mass Quality:	1.000	
Actual Area:	1.838	in2	Outlet Density:	0.043	lb/ft3
Relief Pressure:	165.0	psig	Outlet Ideal Cp/Cv:	1.288	
Relief Temperature:	86.2	F	Outlet Viscosity:	0.011	сР
Relief MW:	16.74		Inlet Non-Recoverble dP:	1.4	psi
Relief Mass Quality:	1.000		Inlet dP % Set:	1.0	% Set
Relief Density:	0.528	lb/ft3	Built-Up Back Pressure:	11.0	psig
Relief SG:	0.577		Built-Up Back P % Set:	7.4	% Set
Relief Z:	0.973		Total Back Pressure:	11.0	psig
Relief Ideal Cp/Cv:	1.286		Total Back P % Set:	7.4	% Set
Relief Viscosity:	0.011	сР	Reaction Force:	257	lbf

Equipment Data:

Equipment Tag:	V-1000	Туре:	Pressure Vessel
Drawing:	PID-1000	MAWP:	150 psig
Description:	Slug Catcher	MAWT:	250 F

Scenario Input Data:

Control Valve Tag:		PCV-1000	
Gas Type:		Residue Gas	
Upstream Pressure:		800	psig
Upstream Pressure B	asis:	PSHH-1000 Set P	oint
Upstream Temperati	ure:	120	F
Dewpoint Vapor:			
Set Pressure:		150	psig
Allowable Overpress	ure:	10.0%	
Constant Back Pressu	ıre:	0	psig
Required Relief Rate	Units:	lb/hr	
Sizing Method		Kimray	
Cv:		6.49	
Xt (Cf for Kimray):		0.78	
C1:		0	
Cg:		0	
Control Valve ID:		0.957	in
Inlet Pipe ID:		1.939	in
Outlet Pipe ID:		1.939	in
Additional Flow:		1,000.0	lb/hr
Use Thermo		\checkmark	
Thermo Package:	Advanced	Peng-Robinson	
Relief Device Kd:		0.975	
Nozzle Sizing:	API 520 Va	apor	
Outlet Pipe Sizing:	Adiabatic		
Notes:			

Scenario Output Data:		
Fk:	0.91	
K1 Inlet Piping Resistance:	0.29	
K2 Outlet Piping Resistance:	0.57	
K1 Inlet Piping Bernoulli:	0.94	
K2 Outlet Piping Bernoulli:	0.94	
Fp:	0.977	
dP/P1 Actual:	0.779	
dP/P1 Critical:	0.515	
Y:	1.5	
Upstream Density:	2.404	lb/ft3
Upstream Z:	0.912	
Upstream Ideal Cp/Cv:	1.279	
Control Valve Flow:	8,101.9	lb/hr
Required Mass Rate:	9,101.9	lb/hr
Required Rate Std Vol:	5.0	MMSCFD
Required Air Rate:	160,669.6	scfh air
Relief Mass Flux:	429.9	lb/sec/ft2

Equipment Data:						
Equipment Tag:	V-1000	Туре:	Pressure Vessel			
Drawing:	PID-1000	MAWP:	150 psig			
Description:	Slug Catcher	MAWT:	250 F			

Relief Stream Composition:

Stream Description:	Residue Gas
Component	Mole Fraction
methane	0.9577
ethane	0.0320
propane	0.0008
butane	
isobutane	
pentane	
isopentane	
hexane	
heptane	
octane	
nonane	
decane	
carbon dioxide	0.0070
nitrogen	0.0025
methanol	
water	

Gas Sizing Calculation

Created: Monday, May 20, 2024 16:50

Condition 1

Condition Label	Normal			
Critical Flow Factor (C _f)	.78			
Flowing Temp.	120	°fahrenheit		
Gas Specific Gravity	.577			
Upstream Pressure	800	psig		
Downstream Pressure	165			
Flow Coefficient (Cv)	6.49			
Flow Rate	4514.7{	mcfd		
	8,296.5 lb/hr			

https://kimray.com/kimray/calculations/print-it/2400/gas-sizing?conditions=W3sibGFiZWwiOiJOb3JtYWwiLCJjcml0aWNhbF9mbG93X2ZhY3Rvcil6li43OCIsImRvd25zdHJIYW1fcHJlc3N1cmUiOiIxNjUiLCJmbG93X3Jh... 1/3

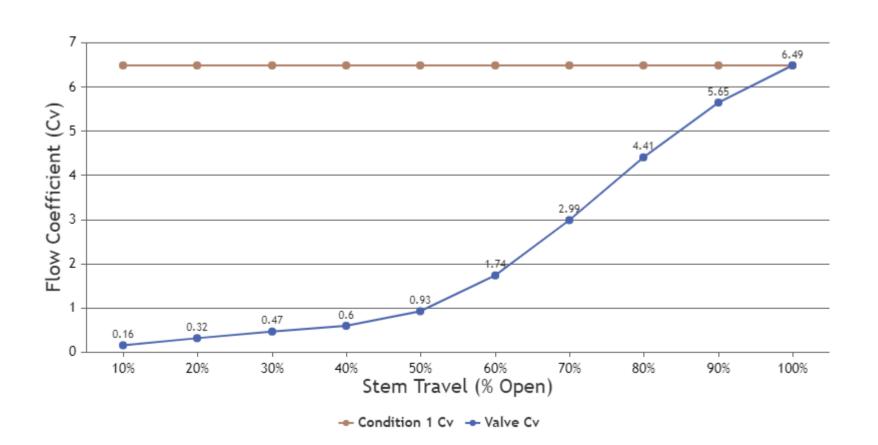
<u>Valves</u> / <u>High Pressure Control Valves</u> / <u>High</u> <u>Pressure Pressure Reducing Package</u> /

EAC3P

Configuration Code:

Description: 1400 SMA PO 1/2EP 30HPPR

1" Female NPT Angled Body 0.5" Equal Percentage TrimProcess Fluid: **Gas**Operation: **Pneumatic**Pilot Type: **Vent**100% Cv: **6.49**


Utilizes process gas to operate integrated pilot. Gas must be clean and dry.

Specifications

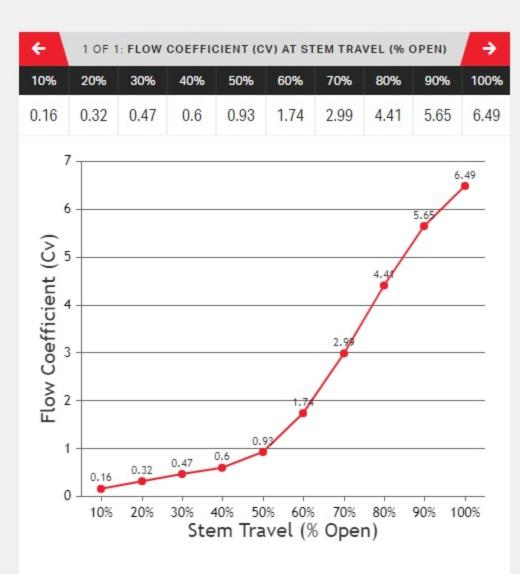
ТҮРЕ	VALUE
Connection Size:	1"
Connection Type:	Female NPT
Body Style:	Angled Body
Body Material:	Steel
NACE MR0175:	Option Available
Trim Size:	0.5 "
Trim Type:	Equal Percentage
Leakage Class:	Class IV
Process Fluid:	Gas
Pilot Type:	Vent
Max Working Pressure:	4000 psig
Min Set Point Pressure:	10 psig
Max Set Point Pressure:	300 psig
Fail Position:	Closed
Operation:	Pneumatic
Catalog Page:	01:10.1
Min Cv:	0.32
Max Cv:	6.49
Cf:	0.78

FLOW COEFFICIENT (CV) AT STEM TRAVEL (% OPEN)

10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	
0.16	0.32	0.47	0.6	0.93	1.74	2.99	4.41	5.65	6.49	

Gas Sizing Formula

$$Cv = \frac{41666Q - \sqrt{GT}}{834C_{f}P_{1}(y - 0.148y^{3})} \qquad Q = \frac{834C_{v}C_{f}P_{1}(y - 0.148y^{3})}{41666 - \sqrt{GT}}$$
$$y = \frac{1.63}{C_{f}} - \sqrt{\frac{\Delta P}{P_{1}}} \le 1.50$$


Where:

Cv	=	Valve Flow Coeffiecient
Cf	=	Critical Flow Factor
G	=	Gas specific Gravity (air = 1.0)
P1	=	Upstream Pressure (psia) = Pu + 14.7
Pu	=	Upstream Pressure (psig)
P2	=	Downstream Pressure (psia) = Pd + 14.7
Pd	=	Downstream Pressure (psig)
ΔP	=	P1 - P2
Q	=	Gas Flow Rate in MMCF / Day at 14.7 psia and 60F
Т	=	Flowing Temperature in R = Tf +460
Τf	=	Flowing Temperature in F

© 2024 Kimray Inc. All Rights Reserved | 52 NW 42nd St. OKC, OK 73118 | Ph. 405.525.6601

https://kimray.com/kimray/calculations/print-it/2400/gas-sizing?conditions=W3sibGFiZWwiOiJOb3JtYWwiLCJjcml0aWNhbF9mbG93X2ZhY3Rvcil6li43OCIsImRvd25zdHJIYW1fcHJlc3N1cmUiOiIxNjUiLCJmbG93X3Jh... 3/3

Product Charts

Tech Specs

ТҮРЕ	VALUE
Connection Size:	1"
Connection Type:	Female NPT
Body Style:	Through Body
Body Material:	Steel
NACE MR0175:	Option Available
Trim Size:	0.5 "
Trim Type:	Equal Percentage
Leakage Class:	Class IV
Process Fluid:	Liquid and Gas
Max Working Pressure:	4000 psig
Actuator Spring Nominal Pressure:	30 psig
Max Supply Gas Pressure:	45 psig
Fail Position:	Closed - Field Reversible
Operation:	Pneumatic
Catalog Page:	01:10.1
Face-to-Face Length:	4.44 "
Min Cv:	0.32
Max Cv:	6.49
Cf:	0.78

PCV-1000 Failure Open - 1" Kimray Non-Balanced, 1/2" =% Trim

Vapor Control Valve (Kimray Method with Fp Input) Critical PSV Flow Only

User-Entered Inputs			
P ₁	800.0	psig	
P _{atm}	14.4	psia	
T ₁	120.0	F	
P ₂	165.0	psig	
C _v	6.49		
C _f	0.780		
F _p	0.976		
K _d	0.975		
	Thermo Inputs		
K _{Ideal1}	1.279		
Z ₁	0.910		
MW	16.74	lb/lbmole	
T ₁	120.0	F	
ρ ₁	2.41	lb/ft ³	
T ₂	86.2	F	
Z ₂	0.973		
K _{Ideal2}	1.286		
	Results		
X _{actual}	0.780		
Y _{actual}	1.8		
Y sizing	1.500		
P _{choked}	380.4	psig	
W _{cv}	8,094	lb/hr	
WADDITIONAL	1,000	lb/hr	
W _{REQUIRED}	9,094	lb/hr	
С	345.7		
A _{req}	0.847	in ²	

Equipment Data:				
Equipment Tag:	V-1000	Туре:	Pressure Vessel	
Drawing:	PID-1000	MAWP:	150 psig	
Description:	Slug Catcher	MAWT:	250 F	

Scenario Description:

The maximum upstream pressure is 800 psig as dictated by the set point of PSHH-1000. As such, a failure open of PCV-1000 could result in overpressure and the required relief rate was based on the recovery residue gas composition at 800 psig and 120 F upstream of control valve with the relief pressure of 165 psig downstream. The C1 was assumed (not published by Fisher) to be 28.2 and the Cg was back-calculated from the Cv and C1. The control valve is installed in a 2" line.

Scenario Calculation Results:

Required Rate:	9,410.0	lb/hr	Device Choke Pressure:	83.8	psig
Actual Capacity:	19,755.4	lb/hr	Outlet Temperature:	75.9	F
Required Area:	0.876	in2	Outlet Mass Quality:	1.000	
Actual Area:	1.838	in2	Outlet Density:	0.043	lb/ft3
Relief Pressure:	165.0	psig	Outlet Ideal Cp/Cv:	1.288	
Relief Temperature:	86.2	F	Outlet Viscosity:	0.011	сР
Relief MW:	16.74		Inlet Non-Recoverble dP:	1.4	psi
Relief Mass Quality:	1.000		Inlet dP % Set:	1.0	% Set
Relief Density:	0.528	lb/ft3	Built-Up Back Pressure:	11.0	psig
Relief SG:	0.577		Built-Up Back P % Set:	7.4	% Set
Relief Z:	0.973		Total Back Pressure:	11.0	psig
Relief Ideal Cp/Cv:	1.286		Total Back P % Set:	7.4	% Set
Relief Viscosity:	0.011	сР	Reaction Force:	257	lbf

Equipment Data:

Equipment Tag:	V-1000	Туре:	Pressure Vessel
Drawing:	PID-1000	MAWP:	150 psig
Description:	Slug Catcher	MAWT:	250 F

Scenario Input Data:

		r	
Control Valve Tag:		PCV-1000	
Gas Type:		Residue Gas	
Upstream Pressure:		800	psig
Upstream Pressure B	asis:	PSHH-1000 Set P	Point
Upstream Temperati	ure:	120	F
Dewpoint Vapor:			
Set Pressure:		150	psig
Allowable Overpress	ure:	10.0%	
Constant Back Pressu	ıre:	0	psig
Required Relief Rate	Units:	lb/hr	
Sizing Method		Traditional Fishe	r
Cv:		6.51	
Xt (Cf for Kimray):			
C1:		28.2	
Cg:		183.6	
Control Valve ID:		0.957	in
Inlet Pipe ID:		1.939	in
Outlet Pipe ID:		1.939	in
Additional Flow:		1,000.0	lb/hr
Use Thermo		✓	
Thermo Package:	Advanced	Peng-Robinson	
Relief Device Kd:		0.975	
Nozzle Sizing:	API 520 Va	apor	
Outlet Pipe Sizing:	Adiabatic		
Notes:			
	1		

Scenario Output Data:				
Fk:	0			
K1 Inlet Piping Resistance:	0.29			
K2 Outlet Piping Resistance:	0.57			
K1 Inlet Piping Bernoulli:	0.94			
K2 Outlet Piping Bernoulli:	0.94			
Fp:	0.976			
dP/P1 Actual:	0.779			
dP/P1 Critical:	0.552			
Y:	0			
Upstream Density:	2.404	lb/ft3		
Upstream Z:	0.912			
Upstream Ideal Cp/Cv:	1.279			
Control Valve Flow:	8,410.0	lb/hr		
Required Mass Rate:	9,410.0	lb/hr		
Required Rate Std Vol:	5.1	MMSCFD		
Required Air Rate:	166,108.3	scfh air		
Relief Mass Flux:	429.9	lb/sec/ft2		

Ν

Equipment Data:			
Equipment Tag:	V-1000	Туре:	Pressure Vessel
Drawing:	PID-1000	MAWP:	150 psig
Description:	Slug Catcher	MAWT:	250 F

Relief Stream Composition:

Stream Description:	Residue Gas
Component	Mole Fraction
methane	0.9577
ethane	0.0320
propane	0.0008
butane	
isobutane	
pentane	
isopentane	
hexane	
heptane	
octane	
nonane	
decane	
carbon dioxide	0.0070
nitrogen	0.0025
methanol	
water	

PCV-1000 Failure Open - 1" Fisher D4, 1/2" m-form

Vapor Control Valve (Traditional Method with Fp Input) Critical PSV Flow Only

User-Entered Inputs			
P ₁	800.0	psig	
P _{atm}	14.4	psia	
T ₁	120.0	F	
P ₂	165.0	psig	
C _g	183.6		
C ₁	28.2		
F _p	0.976		
K _d	0.975		
	Thermo Inputs		
K _{Ideal1}	1.279		
Z ₁	0.912		
MW		lb/lbmole	
T ₁	120.0	F	
T ₂	86.2	F	
Z ₂	0.973		
K _{Ideal2}	1.286		
	Results	1	
X _{actual}	0.780		
Sine Term Based on x _{actual}	107.0	Degrees	
x _{choked} (Sine Term = 90)	0.552		
X _{sizing}	0.552		
Sine Value for Sizing	1.000		
P _{choke}	350.7	psig	
ρ_1	2.40	lb/ft ³	
W _{cv}	8,401	lb/hr	
W _{ADDITIONAL}	1,000	lb/hr	
W _{REQUIRED}	9,401	lb/hr	
С	345.7		
A _{req}	0.876	in ²	