Tube Rupture – Numerical Integration

Heat Exchanger Tube Rupture f	Numerical Int	tegrat	ion			
Equipment Data:						
Equipment Tag Number: EqTag		-	Equipman	t Type:	EqType	
Drawing: Drawing		-	MAWP		MAWP	psig
Description: Description			MAWT::::		MAWT	F
Input Data:			Output I	Data:		
Upstream Pressure: P1	Psig		Upstream	Density:	rho1	lb/tt3
Upstream Pressure Basis:			Upstream	Ζ:	Z1	
Flash Type: Flash Type 🗸]		Upstream	Ideal Cp/Cv:	k1	
Upstream Mass Quality: 01			Upstream	Viscosity:	Vis1	CP:
Upstream Temperature:	F		Orifice:Flo	w:C:	FlowC	
Set Pressure: SetP	psig		Discharge	Cd:	Cd	
Allowable:Overpressure:::::::::::::::::::::::::::::::::	[<u></u>		Orifice:Flo	w.Choked:	OrificeChoked	
Constant Back Pressure: P3	psig		Orifice:Ch	oke Pressure:	OrificeChokeP	psig
TubeOD:			Tube:Shee	t Flowrate:	OrificeFlow	RateU
TubeBWG			Tube:Flow	Choked:	TubeChoked	
Tube:Inner:Diameter::::::: TubeID	in		Tube:Exit:	ressure	TubeChokeP	psig
Tube Equivalent Length: TubeL	*		Tube:Flow	rate:	TubeFlow -	RateU
Pipe Roughness: Roughness	in		Required	kate:	RequiredRate	RateU
Number of Pressure Steps: Pincrements			ReliefMas	s:Flux:	Flux2	lb/sec/ft2
ThermoPackage: ThermoPackage	\sim		ReliefDev	ice Kd:	Kd	
StreamID	1		Scenario (Bescription:	Scenario Descri	ptio
Open Stream New Stream						
Rener Device Liquid Kd: KdL						
Rener Device Vapor Kd: KdV						
Nozze Statig	✓					
Calculate	Preview) (C	Print	Close		
Notes						

Note: Thermodynamics are required for this form.

Equipment Data:

The six fields under Equipment Data are specified on the Overpressure Scenario Form.

Input Data:

The form fields for inputs are blue and organized under the Scenario Input column. The are described below:

P1 – Pressure upstream of restriction orifice. From most to least conservative: MAWP, PSV Set, PSHH, Max Operating

P1Basis – Description for choice of P1. PSV-100 Set Pressure, PSHH Setpoint, etc.

Flash Type – PT or PQ flash.

Q1 – Quality at inlet to pipe for PQ Flash Only. Calculated for PT Flash.

T1 – Temperature at inlet to pipe for PT Flash Only. Calculated for PQ Flash.

SetP – PSV set pressure used to determine relief pressure.

OverP – Allowable overpressure typically 10% used to determine relief pressure.

P3 – Constant back pressure when PSV is closed.

TubeOD – Tube outer diameter (used along with TubeBWG to get TubeID)

TubeBWG – Tube Birmingham Wire Gauge (used along with TubeOD to get TubeID)

TubeID - Tube inner diameter (calculated if TubeOD and TubeBWG entered, otherwise must be input)

TubeL - Tube equivalent length

Roughness - Roughness used to quantify tube friction factor (default = 0.0018 in for carbon steel)

Pincrements - Number of pressure increments to be analyzed. (P1 - P2) / Pincrements = Pressure Step

ThermoPackage – Thermo package used for properties. VMG (Symmetry) packages or REFPROP 10.0 from NIST

StreamID – The stream to be used for properties. A new stream can be added here. See <u>Stream Definition</u> Form.

KdL – Manufacturer's certified liquid Kd or 0.65 for API STD 520 default.

KdV – Manufacturer's certified vapor Kd or 0.975 for API STD 520 default.

Sizing – PSV sizing method: API 520 Vapor or Numerical Integration (recommended when Z <= 0.8).

OutPipeSizing – Outlet pressure drop method: Adiabatic, Omega Method or Numerical Integration.

Calculation Method:

This form supports liquid, vapor or two phase flow through a tube rupture in a shell and tube heat exchanger. The tube break is assumed to occur at the tube sheet such that fluid will flow directly through the tubesheet which is treated as an orifice and through the tube which is quantified based on pipe flow. The orifice flow calculation is identical to the Orifice Flow Numerical Integration calculation and the pipe flow calculation is identical to the Pipe Flow Numerical Integration. Reference those individual forms for the detailed calculation method for each.

Scenario Output Data:

The form fields for scenario-specific outputs are organized under the Scenario Output column. These are described below:

rho1 - Upstream density in lb/ft3 typically from thermo engine.

Z1 - Upstream compressibility typically from thermo engine.

K1 - Upstream ideal C_p/C_v typically from thermo engine.

Vis1 - Upstream viscosity in cP from thermo engine

FlowC – Orifice discharge coefficient corrected for the velocity of approach.

Cd - Orifice discharge coefficient defaulted to 0.62.

OrificeChoked – Applicable to flow through the tubesheet, Yes for critical flow, no for subcritical flow

OrificeChokeP – Applicable to flow through the tubesheet. Calculated choke pressure or downstream pressure if not choked

OrificeFlow - Calculated flow through the tubesheet

TubeChoked – Applicable to flow through the tube, Yes for critical flow, no for subcritical flow

TubeChokeP – Applicable to flow through the tube. Calculated choke pressure or downstream pressure if not choked

TubeFlow – Calculated flow through the tube

RequiredRate - Sum of OrificeFlow and TubeFlow.

Flux2 - RequiredRateMass · RequiredArea * 144 / 3600

Kd - Overall relief valve Kd based on volumetric average of liquid and vapor values if two phase

Scenario Calculation Results:

The form fields for overall scenario results are organized in the Scenario Calculation Results Section. These outputs are typical of most of the scenario calculations and are detailed under Typical Scenario Calculation Results.

QA/QC Benchmarks:

As described under the Calculation Method Section, the tube rupture calculation is the sum of orifice flow and pipe flow both of which have been benchmarked individually. As such, the Tube Rupture Numerical Integration was benchmarked against these two individual sheets to ensure consistency. As the following reports show the two flows calculated by the Tube Rupture Numerical Integration method are essentially identical to the individual flows calculated by the Orifice Numerical Integration and Pipe Flow Numerical Integration forms.

Tube Rupture – Numerical Integration

Heat Exchanger Tube Ri	upture Nume	rical Integ	rat	tion				
Equipment Data:	<u> </u>							
Foulinment Tas Number				Follioman	t Type:	FoType		L
Drawing: Dra	wing	<u> </u>		MAMP		MAWP	osia	h
Description	scription	<u> </u>		MAWT		MAWT	F	
							·····	<u></u>
Input Data:				Output I	Data:			
Upstream Pressure:	P1 Psig			Upstream	Density:	rho1	18/1	t3
Upstream Pressure Basis: P18	Basis			Upstream	Ζ:	Z1		
Flash Type: Flash	shType 🧹			Upstream	ldeal Cp/Cv:	k1		
Upstream Mass Quality:	Q1			Upstream	Viscosity:	Vis1	CP:	
Upstream Temperature:	T1			Orifice:Flo	w.C:	FlowC		
Set Pressure:	SetP Psig			Discharge	Cd:	Cd		
Allowable:Overpressura:::::	OverP			Orifice:Flo	w Choked:	OrificeChoked		
Constant Back Pressure:	P3 Psig			Orifice:Ch	oke:Pressure:	OrificeChokeP	psi	£
Tube OD:	TubeOD 🧹			Tube:Shee	t Flowrate:	OrificeFlow	Rat	teU
Tube:BWG: T	ubeBWG 🧹			Tube:Flow	Choked:	TubeChoked		
Tube Inner Diameter	TubeID in:::			Tube:Exit:	ressure:	TubeChokeP	psi	s
Tobe Equivalent Length:	TubeL 🛱			Tube:Flow	rate:	TubeFlow -	Rat	teU
Pipe Roughness:	Roughness Mili			Required	Rate:	RequiredRate	Rat	teU
Number of Pressure Steps: P	Increments			ReliefMas	s:Flux:	Flux2	18/	ec/ft2
Tharmo Packaga: ThermoPacka	ge			Relief Dev	ce Kd:	Kd		
StreamID	~			Scenario D	escription:	Scenario Descri	ptio	
Open Stream New Stream								
Relief Device Liquid Kd:	KdL							
Relief Device Vapor (d:	KdV							
Nozzle Sizing: Sizing	~							
Outlet:Pipe Sizing: OutPipeSizing								
	Calculate	Preview	1	Print	Close			
Notes:	es		Ì					

Note: Thermodynamics are required for this form.

Equipment Data:

The six fields under Equipment Data are specified on the Overpressure Scenario Form.

Input Data:

The form fields for inputs are blue and organized under the Scenario Input column. The are described below:

P1 – Pressure upstream of restriction orifice. From most to least conservative: MAWP, PSV Set, PSHH, Max Operating

P1Basis – Description for choice of P1. PSV-100 Set Pressure, PSHH Setpoint, etc.

Flash Type – PT or PQ flash.

Q1 – Quality at inlet to pipe for PQ Flash Only. Calculated for PT Flash.

T1 – Temperature at inlet to pipe for PT Flash Only. Calculated for PQ Flash.

SetP – PSV set pressure used to determine relief pressure.

OverP – Allowable overpressure typically 10% used to determine relief pressure.

P3 – Constant back pressure when PSV is closed.

TubeOD – Tube outer diameter (used along with TubeBWG to get TubeID)

TubeBWG – Tube Birmingham Wire Gauge (used along with TubeOD to get TubeID)

TubeID - Tube inner diameter (calculated if TubeOD and TubeBWG entered, otherwise must be input)

TubeL - Tube equivalent length

Roughness - Roughness used to quantify tube friction factor (default = 0.0018 in for carbon steel)

Pincrements - Number of pressure increments to be analyzed. (P1 - P2) / Pincrements = Pressure Step

ThermoPackage – Thermo package used for properties. VMG (Symmetry) packages or REFPROP 10.0 from NIST

StreamID – The stream to be used for properties. A new stream can be added here. See Stream Definition Form.

KdL – Manufacturer's certified liquid Kd or 0.65 for API STD 520 default.

KdV – Manufacturer's certified vapor Kd or 0.975 for API STD 520 default.

Sizing – PSV sizing method: API 520 Vapor or Numerical Integration (recommended when Z <= 0.8).

OutPipeSizing – Outlet pressure drop method: Adiabatic, Omega Method or Numerical Integration.

Calculation Method:

This form supports flow of a liquid, vapor or two phase flow through a tube rupture in a shell and tube heat exchanger. The tube break is assumed to occur at the tube sheet such that fluid will flow directly through the tubesheet which is treated as an orifice and through the tube which is quantified based on pipe flow. The orifice flow calculation is identical to the Orifice Flow Numerical Integration calculation and the pipe flow calculation is identical Integration calculation. Reference those individual forms for the detailed calculation method for each.

Scenario Output Data:

The form fields for scenario-specific outputs are organized under the Scenario Output column. These are described below:

rho1 - Upstream density in lb/ft3 typically from thermo engine.

- Z1 Upstream compressibility typically from thermo engine.
- K1 Upstream ideal C_p/C_v typically from thermo engine.

Vis1 - Upstream viscosity in cP from thermo engine
FlowC - Orifice discharge coefficient corrected for the velocity of approach.
Cd - Orifice discharge coefficient defaulted to 0.62.
OrificeChoked - Applicable to flow through the tubesheet, Yes for critical flow, no for subcritical flow
OrificeChokeP - Applicable to flow through the tubesheet. Calculated choke pressure or downstream pressure if not choked
OrificeFlow - Calculated flow through the tubesheet
TubeChokeP - Applicable to flow through the tube, Yes for critical flow, no for subcritical flow
TubeChokeP - Applicable to flow through the tube. Calculated choke pressure or downstream pressure if not choked
TubeChokeP - Applicable to flow through the tube. Calculated choke pressure or downstream pressure if not choked
TubeFlow - Calculated flow through the tube
RequiredRate - Sum of OrificeFlow and TubeFlow.
Flux2 - RequiredRateMass · RequiredArea * 144 / 3600

Kd – Overall relief valve Kd based on volumetric average of liquid and vapor values if two phase

Scenario Calculation Results:

The form fields for overall scenario results are organized in the Scenario Calculation Results Section. These outputs are typical of most of the scenario calculations and are detailed under Typical Scenario Calculation Results.

QA/QC Benchmarks:

As described under the Calculation Method Section, the tube rupture calculation is the sum of orifice flow and pipe flow both of which have been benchmarked individually. As such, the Tube Rupture Numerical Integration was benchmarked against these two individual sheets to ensure consistency. As the following reports show the two flows calculated by the Tube Rupture Numerical Integration method are essentially identical to the individual flows calculated by the Orifice Numerical Integration and Pipe Flow Numerical Integration forms.

Heat Exchanger Tube Rupture - Numerical Integration

HX-1000 Tube Rupture

Equipment Data:				
Equipment Tag:	V-1000	Туре:	Pressure Vessel	
Drawing:	PID-1000	MAWP:	150 psig	
Description:	Slug Catcher	MAWT:	250 F	

Scenario Description:

The MAWP of the high pressure side of HX-1000 is 350 psig, therefore a tube rupture could result in overpressure. The required relief rate was based on the recovery NGL composition at 350 psig and the associated bubblepoint temperature. The tubes were selected as 1" BWG 24 to closely match 1" Sch 80 from the pipe flow benchmark case.

Scenario Results Summary:

Required Rate:	58954.6	lb/hr	Device Choke Pressure:	82.5	psig
Actual Capacity:	37083.4	lb/hr	Outlet Temperature:	-64.6	F
Required Area:	2.245	in2	Outlet Mass Quality:	0.501	
Actual Area:	1.838	in2	Outlet Density:	0.243	lb/ft3
Relief Pressure:	165.0	psig	Outlet Ideal Cp/Cv:		
Relief Temperature:	44.2	F	Outlet Viscosity:	0.046	сР
Relief Mass Quality:	0.216		Inlet Non-Recoverble dP:	0.5	psi
Relief Density:	5.42	lb/ft3	Inlet dP % Set:	0.3	% Set
Relief MW:	41.57		Built-Up Back Pressure:	6.1	psig
Relief Viscosity:	0.061	сР	Built-Up Back P % Set:	4.1	% Set
			Total Back Pressure:	6.1	psig
			Total Back P % Set:	4.1	% Set
			Reaction Force:	257	lbf

Heat Exchanger Tube Rupture - Numerical Integration

HX-1000 Tube Rupture

28.92

0.620

0.620

Yes

239 psig

No

165 psig

30293.1

28661.5

58954.6

1050.4

0.940

lb/ft3

lb/hr

lb/hr

lb/hr

lb/sec/ft2

Equipment Data:

Equipment Tag:	V-1000	Туре:	Pressure Vessel
Drawing:	PID-1000	MAWP:	150 psig
Description:	Slug Catcher	MAWT:	250 F

Output Data:

Input Data:

Upstream Pressure:		350	psig	Upstream Density:
Upstream Pressure Ba	sis:	MAWP		Orifice Flow C:
Flash Type:		PQ		Discharge Cd:
Upstream Mass Qualit	iy:	0.000		Orifice Flow Choked:
Upstream Temperatur	re:	90.0	F	Orifice Choke Pressure:
Set Pressure:		150	psig	Tube Sheet Flowrate:
Allowable Overpressu	re:	10.00%		Tube Flow Choked:
Constant Back Pressur	e:	0	psig	Tube Exit Pressure:
Tube Inner Diameter:		0.954	in	Tube Flowrate:
Tube Equivalent Lengt	h:	20	ft	Required Rate:
Pipe Roughness:		0.0018	in	Relief Mass Flux:
Number of Increments	5:	10		Relief Device Kd:
Relief Device Liquid Ko	1:	0.650		
Relief Device Vapor Ko	1:	0.975		
Nozzle Sizing:	Numerical	Integration		
Outlet Pipe Sizing:	Omega Me	ethod		
Notes:				

RKR Engineering and Consulting Gas Plant XYZ Pressio 2024 Help Benchmarks 2024-1000

Heat Exchanger Tube Rupture - Numerical Integration

HX-1000 Tube Rupture

Equipment Data:				
Equipment Tag:	V-1000	Туре:	Pressure Vessel	
Drawing:	PID-1000	MAWP:	150 psig	
Description:	Slug Catcher	MAWT:	250 F	

Relief Stream Composition:

Stream Description:	Recovery NGL
Component	Mole Fraction
nitrogen	0.0000
methane	0.0036
carbon dioxide	0.0073
ethane	0.4896
hydrogen sulfide	0.0000
propane	0.3102
isobutane	0.0502
butane	0.0666
isopentane	0.0193
pentane	0.0120
hexane	0.0275
heptane	0.0137
octane	
nonane	
decane	
methanol	
water	

Pipe Flow Numerical Integration

Equipment Data:				
Equipment Tag:	V-1000	Туре:	Pressure Vessel	
Drawing:	PID-1000	MAWP:	150 psig	
Description:	Slug Catcher	MAWT:	250 F	

Scenario Description:

The maximum pressure upstream of the 1" ball valve drain is 350 psig as dictated by the MAWP of the NGL Tank. As such, inadvertent opening of this valve could result in overpressure. The required relief rate was based on the recovery NGL composition at 350 psig and the associated bubblepoint temperature. As the drain valve is a ball valve, the relief requirement was based on pipe flow through the 1" Sch 80 drain line that has an equivalent length of 20 ft.

Scenario Results Summary:

Required Rate:	28830.6	lb/hr	Device Choke Pressure:	82.5	psig
Actual Capacity:	48378.7	lb/hr	Outlet Temperature:	-64.5	F
Required Area:	1.098	in2	Outlet Mass Quality:	0.502	
Actual Area:	1.838	in2	Outlet Density:	0.243	lb/ft3
Relief Pressure:	165.0	psig	Outlet Ideal Cp/Cv:		
Relief Temperature:	44.3	F	Outlet Viscosity:	0.046	сР
Relief Mass Quality:	0.217		Inlet Non-Recoverble dP:	0.8	psi
Relief Density:	5.41	lb/ft3	Inlet dP % Set:	0.6	% Set
Relief MW:	41.57		Built-Up Back Pressure:	12.2	psig
Relief Viscosity:	0.061	сР	Built-Up Back P % Set:	8.1	% Set
			Total Back Pressure:	12.2	psig
			Total Back P % Set:	8.1	% Set
			Reaction Force:	257	lbf

Pipe Flow Numerical Integration

Equipment Data:

Equipment Tag:	V-1000	Туре:	Pressure Vessel
Drawing:	PID-1000	MAWP:	150 psig
Description:	Slug Catcher	MAWT:	250 F

Scenario Calculations:

Input Data:

Upstream Pressure:		350	psig	
Upstream Pressure Ba	asis:	MAWP		
Flash Type:		РТ		
Upstream Mass Quali	ty:	0.001		
Upstream Temperatu	re:	90.0	F	
Set Pressure:		150	psig	
Allowable Overpressu	ire:	10.00%		
Constant Back Pressu	re:	0	psig	
Pipe Nominal Pipe Size:		1"		
Pipe Nominal Pipe Sch	nedule:	80		
Pipe Inner Diameter:		0.957	in	
Pipe Equiv. Length:		20	ft	
Pipe Roughness:		0.0018	in	
Number of Increment	s:	10		
Relief Device Liquid K	d:	0.650		
Relief Device Vapor Kd:		0.975		
Thermo Package:	Advanced_	Peng-Robinson		
Nozzle Sizing:	API Numer	rical Integration		
Outlet Pipe Sizing:	Omega Me	ethod		

Output Data:

Upstream Density:	28.74	lb/ft3
Upstream Z:	0.000	
Upstream Ideal Cp/Cv:	0.000	
Upstream Viscosity:	0.065	сР
Choked:	No	
Exit Pressure:	165	psig
Relief Device Kd:	0.940	
Relief Mass Flux:	1050.3	lb/sec/ft2
Fanning Friction Factor:	0.006	

Notes:

Pipe Flow Numerical Integration

Equipment Data:			
Equipment Tag:	V-1000	Туре:	Pressure Vessel
Drawing:	PID-1000	MAWP:	150 psig
Description:	Slug Catcher	MAWT:	250 F

Relief Stream Composition:

Stream Description:	Recovery NGL
Component	Mole Fraction
nitrogen	0.0000
methane	0.0036
carbon dioxide	0.0073
ethane	0.4896
hydrogen sulfide	0.0000
propane	0.3102
isobutane	0.0502
butane	0.0666
isopentane	0.0193
pentane	0.0120
hexane	0.0275
heptane	0.0137
octane	
nonane	
decane	
methanol	
water	

Orifice Flow - Numerical Integration

HX Tube Rupture RO

Equipment Data:			
Equipment Tag:	V-1000	Туре:	Pressure Vessel
Drawing:	PID-1000	MAWP:	150 psig
Description:	Slug Catcher	MAWT:	250 F

Scenario Description:

This calculation is the flow through the tubesheet, which is based on orifice flow, for comparison to the HX-1000 tube rupture case.

Scenario Results Summary:

30293.1	lb/hr	Device Choke Pressure:	82.5	psig
48460.9	lb/hr	Outlet Temperature:	-64.6	F
1.154	in2	Outlet Mass Quality:	0.501	
1.838	in2	Outlet Density:	0.243	lb/ft3
165.0	psig	Outlet Ideal Cp/Cv:		
44.2	F	Outlet Viscosity:	0.046	сР
0.216		Inlet Non-Recoverble dP:	0.8	psi
5.42	lb/ft3	Inlet dP % Set:	0.6	% Set
41.57		Built-Up Back Pressure:	12.2	psig
0.061	сР	Built-Up Back P % Set:	8.1	% Set
		Total Back Pressure:	12.2	psig
		Total Back P % Set:	8.1	% Set
		Reaction Force:	257	lbf
	30293.1 48460.9 1.154 1.838 165.0 44.2 0.216 5.42 41.57 0.061	30293.1 lb/hr 48460.9 lb/hr 1.154 in2 1.838 in2 165.0 psig 44.2 F 0.216 5.42 1b/ft3 41.57 0.061 cP	30293.1lb/hrDevice Choke Pressure:48460.9lb/hrOutlet Temperature:1.154in2Outlet Mass Quality:1.838in2Outlet Density:165.0psigOutlet Ideal Cp/Cv:44.2FOutlet Viscosity:0.216Inlet Non-Recoverble dP:5.42lb/ft3Inlet dP % Set:41.57Built-Up Back Pressure:0.061cPBuilt-Up Back P % Set:Total Back P % Set:Total Back P % Set:Reaction Force:Reaction Force:	30293.1lb/hrDevice Choke Pressure:82.548460.9lb/hrOutlet Temperature:-64.61.154in2Outlet Mass Quality:0.5011.838in2Outlet Density:0.243165.0psigOutlet Ideal Cp/Cv:

Orifice Flow - Numerical Integration

HX Tube Rupture RO

Equipment Data:

Equipment Tag:	V-1000	Туре:	Pressure Vessel
Drawing:	PID-1000	MAWP:	150 psig
Description:	Slug Catcher	MAWT:	250 F

Output Data:

Input Data:

RO Tag:	HX-1000 Tube Sheet		Beta:	0.095	
Gas Type:	NGL		Orifice Flow C:	0.620	
Upstream Pressure:	350	psig	Discharge Cd:	0.620	
Upstream Pressure Basis:	MAWP		Upstream Density:	28.92	lb/ft3
Flash Type:	PQ		Upstream Z:	0.00	
Upstream Mass Quality:	0.000		Upstream Ideal Cp/Cv:		
Upstream Temperature:	90.0	F	Upstream Viscosity:	0.065	cP
Set Pressure:	150	psig	Choked:	Yes	
Allowable Overpressure:	10.00%		Exit Pressure (P2 for Sizing):	239	psig
Constant Back Pressure:	0	psig	Orifice Mass Flux:	1695.2	lb/sec/ft2
Pressure Increment:	10		Required Mass Rate:	30,293.1	lb/hr
Pipe ID:	10	in	Relief Kd:	0.940	
Orifice ID:	0.954	in	Relief Mass Flux:	1050.0	lb/sec/ft2
Relief Device Liquid Kd:	0.650				
Relief Device Vapor Kd:	0.975				
Thermodynamic Package:	Advanced_Peng-	Robinson			
Nozzle Sizing:	Numerical Integr	ration			
Outlet Pipe Sizing:	Omega Method				
Notes:					

Orifice Flow - Numerical Integration

HX Tube Rupture RO

Equipment Data:			
Equipment Tag:	V-1000	Туре:	Pressure Vessel
Drawing:	PID-1000	MAWP:	150 psig
Description:	Slug Catcher	MAWT:	250 F

Relief Stream Composition:

Stream Description:	Recovery NGL
Component	Mole Fraction
nitrogen	0.0000
methane	0.0036
carbon dioxide	0.0073
ethane	0.4896
hydrogen sulfide	0.0000
propane	0.3102
isobutane	0.0502
butane	0.0666
isopentane	0.0193
pentane	0.0120
hexane	0.0275
heptane	0.0137
octane	
nonane	
decane	
methanol	
water	

