Orifice – Numerical Integration

Orifice Flow N	lumeria	al Integrati	on			:					
Equipment Data:											
				<u></u>							L
Equipment Tag Num	per:	EqTag		8		ulpman	c type:		EqType	_	
Drawing:		Drawing		. 8	M	AWP:			MAWP	psig	
Description		Description		. 8	M	AWT::::			MAWT	F	
Input Data:					0	utput I	Data:				
ROTag		ROTag			Be	sta:			Beta		
Gas:Type:		GasType			0	ifice:Flo	w.C:		FlowC		
Upstream Pressure:		P1	psig		U,	ostream	Densit	¢	rho1	ib/fi	3.
Upstream:Pressure:	Basis:	P1Basis			U)	ostream	Z:		Z1		
Flash Type:		FlashType 🔍			U)	ostream	ldeal C	p/Cv:	k1		
Upstream:Mass:Qua	lity:	01			U,	neertze	Viscosi	ty:	Vis1	cP'	
Upstream:Temperat	ure:	T1	F		CI	ioked:			Choked		
Set Pressure:		SetP	psig		Ex	it Press	ure (P2)	for Sizing):	ChokeP	beis	
Allowable:Overpres	ura:	OverP			0	ifice: Ma	ss Flux		ROFlux	lb/s	sc/ft2
Constant Back Press	ure:	P3	psig		Re	quired	Mass Ra	ste:	iiredRateMass	lb/h	r
PressureIncrement		Pinc			Re	slief Kd:			Kd		
Pipa 1D:		PipelD	in		Re	slief Dev	ica Ma	ss:Flux:	Flux2	lb/s	sc/ft2
Orifice:ID:		OrificeID	in								
Discharge Cd:		Cd									
Thermo Package:	ThermoP	ackage	~								
StreamID		~									
Open Stream N	ew Stream										
Relief Device Liquid	¢d:	KdL									
Relief Device Vapor	Kd:	KdV									
Nozzle Sizing:	Sizing		\checkmark								
Outlet Pipe Sizing:	OutPipeS	izing	V								
		Calculate	Preview	Print	5	CI	ose				

Note: Thermodynamics are required for this form.

Equipment Data:

The six fields under Equipment Data are specified on the Overpressure Scenario Form.

Input Data:

The form fields for inputs are blue and organized under the Scenario Input column. The are described below:

ROTag - Restriction orifice tag number typically from P&ID.

GasType – Generic description of gas such as fuel gas or field gas.

P1 – Pressure upstream of restriction orifice. From most to least conservative: MAWP, PSV Set, PSHH, Max Operating

P1Basis – Description for choice of P1. PSV-100 Set Pressure, PSHH Setpoint, etc.

Flash Type – PT or PQ flash.

Q1 – Quality upstream of restriction orifice for PQ Flash Only. Calculated for PT Flash.

T1 – Temperature upstream of restriction orifice for PT Flash Only. Calculated for PQ Flash.

SetP – PSV set pressure used to determine relief pressure.

OverP – Allowable overpressure typically 10% used to determine relief pressure.

P3 – Constant back pressure when PSV is closed.

Pinc - Number of pressure increments to be analyzed. (P1 - P2) / Pincrements = Pressure Step

RateUnit – Flow units for required relief rate that is reported back to the Overpressure Scenario Form.

PipeID = Pipe inner diameter

Cd = Orifice discharge coefficient defaulted to 0.62.

OrificeID = Orifice inner diameter

ThermoPackage – Thermo package used for properties. VMG (Symmetry) packages or REFPROP 10.0 from NIST

StreamID – The stream to be used for properties. A new stream can be added here. See <u>Stream Definition</u> Form.

KdL – Manufacturer's certified liquid Kd or 0.65 for API STD 520 default.

KdV – Manufacturer's certified vapor Kd or 0.975 for API STD 520 default.

Sizing – PSV sizing method: API 520 Vapor or Numerical Integration (recommended when Z <= 0.8).

OutPipeSizing – Outlet pressure drop method: Adiabatic, Omega Method or Numerical Integration.

Calculation Method:

This form supports flow of a vapor or two phase flow through a restriction orifice under critical and subcritical flow conditions and is based on Numerical Integration equations from API RP 520.

Orifice Flow Coefficient

 C_d , the orifice discharge coefficient corrected for velocity of approach, assumes a high Reynolds number and is set at 0.62. C, the orifice flow coefficient corrected for velocity of approach is calculated from C_d based on the following Crane 410 equation where β is the ratio of the orifice inner diameter to the pipe inner diameter.

$$C = \frac{C_d}{\sqrt{1-6^4}}$$

The ideal mass flux is given by the following equation that will then be corrected based on C.

$$G^{2} = (\rho_{t}^{2}) \times \left(-9266.1 \times \int_{P_{o}}^{P_{t}} \frac{dP}{\rho}\right)$$

Where:

G = Mass Flux lb_m/ft²/sec

t - Conditions at the throat of the orifice

The integral is evaluated based on pressure steps unit either a maximum is reached (choked flow) or the downstream pressure (P2) is reached.

$$\int_{P_0}^{P_t} \frac{dP}{\rho} \approx \sum_{i=0}^{t} 2 \times \left(\frac{P_{i+1} - P_i}{\rho_{i+1} + \rho_i}\right)$$

The pressure step which is equal to $P_{i+1} - P_i$ is determined based on the actual dP equal to $P_{1} - P_2$ multiplied by P_{inc} following equation. The default value of P_{inc} 1.0% (entered as 0.01) if a value is not entered. The densities for each step are determined based on successive isentropic flashes. Once the ideal G has been determined it is converted to mass flow using the following equation.

 $W = G \cdot A \cdot C \cdot 3,600$

W = Mass Flowrate lb/hr

A = Orifice Area ft²

C = Orifice Flow Coefficient

Scenario Output Data:

The form fields for scenario-specific outputs are organized under the Scenario Output column. These are described below:

Beta - Ratio of orifice to pipe inner diameter (OrificeID / PipeID)

FlowC – Orifice coefficient corrected for velocity of approach

Kinlet - Inlet pipe resistance factor

Koutlet - Outlet pipe resistance factor

rho1 - Upstream density in lb/ft3 typically from thermo engine.

Z1 - Upstream compressibility typically from thermo engine.

K1 - Upstream ideal $C_{\rm p}/C_{\rm v}$ typically from thermo engine.

Choked – Yes for critical flow, no for subcritical flow

ChokeP – Calculated choke pressure

ROFlux - Calculated actual mass flux in lb/ft²/sec across orifice (ideal G reduce by Flow C)

RequiredRateMass - RequiredRateCv + AdditionalFlow converted to lb/hr, if necessary.

Kd – Overall relief valve Kd based on volumetric average of liquid and vapor values if two phase

Flux2 - RequiredRateMass · RequiredArea * 144 / 3600

Scenario Calculation Results:

The form fields for overall scenario results are organized in the Scenario Calculation Results Section. These outputs are typical of most of the scenario calculations and are detailed under Typical Scenario Calculation Results.

QA/QC Benchmarks:

The orifice flow numerical integration calculation was benchmarked against Example Problem B.1.3 from the 8th Edition of API STD 520 by comparing the calculated ideal mass fluxes. The API example determined an ideal mass flux of 3,201 lb/ft²/sec with a choke pressure of 454 psig versus 3,225 lb/ft²/sec (Orifice Mass Flux / Orifice Flow C) with a choke pressure of 478 psig with Pressio.

PCV-2000 Bypass Open with RO-2000 Help Case

Equipment Data:					
Equipment Tag:	V-1000	Туре:	Pressure Vessel		
Drawing:	PID-1000	MAWP:	150 psig		
Description:	Slug Catcher	MAWT:	250 F		

Scenario Description:

Based on the API STD 520 8th Edition Annex B.1.3 Example. The maximum upstream pressure is 783 psig which can exceed the design pressure. As such, inadvertent opening of the bypass around PCV-2000 could result in overpressure. The required relief rate is limited by RO-2000 with a 1/2" ID and was based on the properties of pure ethylene at 783 psig and 80 F upstream of bypass with a nominal back pressure of 5 psig.

Scenario Results Summary:

Required Rate:	9830.8	lb/hr	Device Choke Pressure:	66.0	psig
Actual Capacity:	30296.7	lb/hr	Outlet Temperature:	-77.4	F
Required Area:	0.598	in2	Outlet Mass Quality:	1.000	
Actual Area:	1.838	in2	Outlet Density:	0.102	lb/ft3
Relief Pressure:	165.0	psig	Outlet Ideal Cp/Cv:	1.297	
Relief Temperature:	-36.8	F	Outlet Viscosity:	0.008	сР
Relief Mass Quality:	1.000		Inlet Non-Recoverble dP:	1.3	psi
Relief Density:	1.33	lb/ft3	Inlet dP % Set:	0.9	% Set
Relief MW:	28.05		Built-Up Back Pressure:	10.9	psig
Relief Viscosity:	0.009	сР	Built-Up Back P % Set:	7.3	% Set
			Total Back Pressure:	10.9	psig
			Total Back P % Set:	7.3	% Set
			Reaction Force:	257	lbf

Orifice Flow - Numerical Integration

PCV-2000 Bypass Open with RO-2000 Help Case

Equipment Data:

• •			
Equipment Tag:	V-1000	Туре:	Pressure Vessel
Drawing:	PID-1000	MAWP:	150 psig
Description:	Slug Catcher	MAWT:	250 F

Output Data:

Input Data:

•		•	
RO Tag:	RO-2000	Beta:	0.258
Gas Type:	Pure Ethylene	Orifice Flow C:	0.621
Upstream Pressure:	783 psig	Discharge Cd:	0.620
Upstream Pressure Basis:	Maximum Operating Pressure	Upstream Density:	6.64 lb/ft3
Flash Type:	PT	Upstream Z:	0.58
Upstream Mass Quality:	1.000	Upstream Ideal Cp/Cv:	1.24
Upstream Temperature:	80.0 F	Upstream Viscosity:	0.014 cP
Set Pressure:	150 psig	Choked:	Yes
Allowable Overpressure:	10.00%	Exit Pressure (P2 for Sizing):	412.2 psig
Constant Back Pressure:	0 psig	Orifice Mass Flux:	2002.7 lb/sec/ft2
Pressure Increment:	10	Required Mass Rate:	9,830.8 lb/hr
Pipe ID:	1.939 in	Relief Kd:	0.975
Orifice ID:	0.5 in	Relief Mass Flux:	657.6 lb/sec/ft2
Relief Device Liquid Kd:	0.650		
Relief Device Vapor Kd:	0.975		
Thermodynamic Package:	PSRK		
Nozzle Sizing:	Numerical Integration		
Outlet Pipe Sizing:	Omega Method		
Notes:			

Orifice Flow - Numerical Integration

PCV-2000 Bypass Open with RO-2000 Help Case

Equipment Dat	a:				
Equipment Tag:	V-1000		Туре:	Pressure	/essel
Drawing:	PID-1000		MAWP:	150	psig
Description:	Slug Catcher		MAWT:	250	F
Relief Stream (Composition:				
Stream Descrip	otion: Ethylen	e			
Component		Mole Fraction			
ethylene		1.0000			

Orifice or Nozzle Flow Numerical Integration

User-Entered Inputs							
Thermo Package	PSRK						
P ₁	783.0	psig					
P _{atm}	14.7	psia					
T ₁	80.0	F					
P ₂	150.0						
ID _{pipe}	1.939						
ID _{orifice}	0.500						
C _d	0.620						
Flash Type	Isentropic						
P _{inc}	7.83	psi					
	Results						
Z ₁	0.587						
MW	28.05	lb/lbmole					
ρ1	6.638	lb/ft3					
H ₁	2972.1	Btu/lbmole					
S ₁	35.8	Btu/lbmole/F					
в	0.258						
Area _{orifice}	0.196						
Flow C	0.621						
W _{req}	9850.9	lb/hr					

Mass Flux Calculation

P _{up} (psig)	ρ _{up} (lb/ft ³)	P _{down} (psig)	$ ho_{down}$ (lb/ft ³)	Integral	G (lb/in²/hr)	G (lb/ft2/sec)	W (lb/hr)
783.0	6.638	775.2	6.590	1.184	17,254.7	690.2	2,105.2
775.2	6.590	767.3	6.541	2.377	24,267.1	970.7	2,960.7
767.3	6.541	759.5	6.492	3.578	29,553.9	1,182.2	3,605.8
759.5	6.492	751.7	6.443	4.789	33,932.0	1,357.3	4,139.9
751.7	6.443	743.9	6.394	6.008	37,718.4	1,508.7	4,601.9
743.9	6.394	736.0	6.345	7.238	41,076.9	1,643.1	5,011.7
736.0	6.345	728.2	6.295	8.477	44,105.1	1,764.2	5,381.1
728.2	6.295	720.4	6.245	9.726	46,866.8	1,874.7	5,718.1

Calculate RO Flow Rate

720.4	6.245	712.5		10.985	49,406.4	1,976.3	6,027.9
712.5	6.194	704.7	6.144	12.254	51,756.6	2,070.3	6,314.7
704.7	6.144	696.9	6.093	13.533	53,941.8	2,157.7	6,581.3
696.9	6.093	689.0	6.042	14.824	55,981.3	2,239.3	6,830.1
689.0	6.042	681.2	5.990	16.125	57,890.3	2,315.6	7,063.0
681.2	5.990	673.4	5.939	17.438	59,683.8	2,387.4	7,281.8
673.4	5.939	665.5	5.887	18.762	61,364.9	2,454.6	7,486.9
665.5	5.887	657.7	5.835	20.098	62,947.5	2,517.9	7,680.0
657.7	5.835	649.9	5.782	21.446	64,439.9	2,577.6	7,862.1
649.9	5.782	642.1	5.729	22.807	65,844.6	2,633.8	8,033.5
642.1	5.729	634.2	5.676	24.180	67,169.4	2,686.8	8,195.1
634.2	5.676	626.4	5.623	25.566	68,418.0	2,736.7	8,347.5
626.4	5.623	618.6	5.569	26.965	69,594.7	2,783.8	8,491.0
618.6	5.569	610.7	5.514	28.378	70,684.0	2,827.4	8,623.9
610.7	5.514	602.9	5.458	29.805	71,703.9	2,868.2	8,748.4
602.9	5.458	595.1	5.401	31.248	72,658.6	2,906.3	8,864.8
595.1	5.401	587.2	5.345	32.705	73,554.7	2,942.2	8,974.2
587.2	5.345	579.4	5.288	34.178	74,393.6	2,975.7	9,076.5
579.4	5.288	571.6	5.231	35.667	75,177.0	3,007.1	9,172.1
571.6	5.231	563.8	5.174	37.172	75,906.9	3,036.3	9,261.2
563.8	5.174	555.9	5.116	38.694	76,584.9	3,063.4	9,343.9
555.9	5.116	548.1	5.058	40.233	77,212.6	3,088.5	9,420.5
548.1	5.058	540.3	5.000	41.790	77,791.2	3,111.6	9,491.1
540.3	5.000	532.4	4.943	43.365	78,325.9	3,133.0	9,556.3
532.4	4.943	524.6	4.884	44.958	78,808.1	3,152.3	9,615.1
524.6	4.884	516.8	4.825	46.571	79,245.7	3,169.8	9,668.5
516.8	4.825	508.9	4.766	48.204	79,639.5	3,185.6	9,716.6
508.9	4.766	501.1	4.707	49.857	79,989.9	3,199.6	9,759.3
501.1	4.707	493.3	4.648	51.531	80,297.6	3,211.9	9,796.9
493.3	4.648	485.5	4.589	53.226	80,563.2	3,222.5	9,829.3
485.5	4.589	477.6	4.526	54.944	80,740.6	3,229.6	9,850.9
477.6	4.526	469.8	4.449	56.689	80,619.9	3,224.8	9,836.2
469.8	4.449	462.0	4.373	58.464	80,463.7	3,218.5	9,817.1
462.0	4.373	454.1	4.297	60.270	80,272.8	3,210.9	9,793.8
454.1	4.297	446.3	4.221	62.109	80,047.8	3,201.9	9,766.4
446.3	4.221	438.5	4.145	63.981	79,789.1	3,191.6	9,734.8
438.5	4.145	430.6	4.070	65.887	79,497.2	3,179.9	9,699.2
430.6	4.070	422.8	3.995	67.829	79,172.6	3,166.9	9,659.6
422.8	3.995	415.0		69.807	78,815.8	3,152.6	9,616.1