External Fire Supercritical Expansion

Raulpmann Tag Num er: EqTag EqUipmann Type:: EqType Preving:				cohine or haras
Drawing: Drawing: Description Description MAAVF:		EqType	iant:Type:	uipmant Tag Numbar:
Description: Description MAWT:	psig	MAWP		awing:
scenario Input Data: teat Input Calculation: angth: iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	F	MAWT		stription:
ideal input Calcu stion. Scenario Description: Scenario Description: Scenario Description: Scenario Description: Scenario Description: Scenario Description: Wetted Ares: UseAres: R2 Wetted Ares: Wet			io Output Data	enario Input Data:
Additional Vector Analysis Scenario Additional Vector Analysis Length Length Length Vector Analysis Wetted Diameter Diameter Max Impu Head I Drientation Image Paris Max Impu Head I Additional Wetted Area: UserArea Paris Head I Second Reveal UserArea Paris Head I Additional Wetted Area: Level Basis UserArea Paris Second Reveal Level Basis Second Reveal Vector Analysis Second Reveal Level Basis Operating Vapor Dansity: Vr Additional Metted Area Insulation F Coperating Vapor Dansity: Vr Insulation Factor: Insulation F Tot Insulation Reveal Tot Insulation Freesure: Second Seco		Constantine Document	a Organization	at input Calculation
Length: Length Length ↓ Length ↓ Wetted Alea: Wetted Orientation: Diameter	scriptio	Scenario Descri	o descripción.	
Diameter Dia	ea ft2::	WettedArea	l Arlea:	ngth: Length LengthU 🗸
Drientation: Pried Type: Head Type: Head Type: Head Type: Level Additional Metced Pres: Level Basis: Level Basis: Pop Basis Deparating Pressure: Pop Basis Deparating Pressure: Pop Basis Deparating Temperature: Pop Basis Deparating Temperature: Doter T Basis Temperature: Doter T Basis Temperature: Deparating Temperature: Deparating Temperature: Deparating Temperature: Deparating Temperature: Doter T Basis Temperature: Deparating Temperature: Deparating Temperature: Deparating Temperature: Doter T Basis Temperature: Deparating T	ut MMB	HeatInput	put	Biameter Diameter
Head Type Additional Wetzel Arae: UserAras Additional Wetzel Arae: UserAras Additional Wetzel Arae: UserAras Additional Wetzel Arae: UserAras Adequate Drainage UserAras Curvel Basis Bottom Elevation: Issuitation Factor: Insulation Factor: Insulation Factor: Insulation Factor: Pop Paig Operating Vagor Density: Vr Poparsing Pressure: Pop Paig Operating User Density: UserAras Operating User Density: It use Pop Paig User Density: It user user Densit				Britation
Additional Wetted Area: Level Basis: Level Basis: Level Basis: Decom: Elevel Basis:				ad Type: Head1Type
Level Level Level Level Level Level Basis: Level Basis: Level Basis: Level Basis: Determ Elevel on: Insulation Factor: Insulation Factor: Insulation Factor: Insulation Factor: Insulation Factor: Pop Paig Operating Pressure: Pop Paig Operating Pressure: Pop Paig Operating Temperature: Pop Paig Determ Paige Initial Mass: Operating Temperature: Determ Paige Initial Mass: Uig Initial Mass: Uig Initial Mass: Uig Initial Coverpressure: Determ Paige Initial Specific Volume: Initial Determ Initial Specific Volume: Initial Paige Initial Paige In				ditional Wetted Area: UserArea (t2)
Level Basis: Level Basis Bottom: Level Basis Level Basis Level Basis Level Basis Level Basis Lisuitation Factor: Insulation Factor: Distribution Facto				Level
Bottom Elevation: Height [K] Insulation Factor: InsulationF Insulation Factor: InsulationF Include Entrie Area: InsulationF Include Entrie Area: InsulationF Include Entrie Area: InsulationF Insulation Factor: Operating Vapor Density: Vr Operating Pressure Basic: PopBasis Debilapoint Liquid Density: Itr Bubblepoint Liquid Mass: Insue Installation Install Install Install Mass: Install Density: Installation Insta				Vel 8asis
Adequate prainage insulation Factor: insulation Factor: insulation Factor: insulation Factor: insulation persting Prassure: in				ttom:Elevation: Height ft:
Instuartion Pactor: Include Entrina Area Include Entrina Mass Include Entrina Mass I				equate Drainage
Initial Mass and Expansion Rate Calculation; District Mass and Expansion Rate Calculation; Distribution: Dis				Ulation Factor: InsulationF
nitial Mass and spansion Rate Calculation: perating Pressure: perating Pressure: perating Pressure: perating Pressure: perating Pressure: perating Temperature: perating Tempera				lude:Entire Area:
Pop peig Operating Pressure: Pop Peig Operating Vagor Density: Vr ubbilepointLiquid: PopBasis Operating Liquid Density: Lr Lr ubbilepointLiquid: Imitial Mass: Initial Mass: Initial Mass: Liquid Mass: Liquid Mass: ubbilepointLiquid: SetP Psig Initial Mass: Initial Mass: Initial Mass: ulowable:Overpressure: OverP Vapor Mass: Vapor Mass: Vapor Initial Density: Initial Density: iduid Stream DeltaT F Initial Density: Initial Density: Initial Density: iquid Stream DeltaT F Initial Pressure: Critical Pressure: Critical Pressure: Iquid Stream New Stream Vapor Stream: Start Temp for Expansion: Start Critical Pressure: Critical Pressure: Open Stream New Stream KdV Start Enth py for Expansion: Avg islief Device KdV: KdV Start Enth py for Expansion: Critical Pressure: islief Device KdV: KdV Start Enth py for Expansion: HS islief Device KdV: KdV Start Enth py fo				tial Mass and Expansion Rate Calculation:
Aperating Pressure Basis Cite Cite UubblepointLiquid: Imitial Mass Tot Tot Apprenting Temperatures Top F Initial Mass Initial Mass Initial Component Server SerP Psig Initial Mass Initial Mass Initial Component Server OverP Vapor Mass Vapor Mass Vapor Mass Initial Deristry Initial Deristry Initial Deristry Initial Deristry Initial Deristry Initial Server P3 psig Initial Deristry Initial Deristry Initial Deristry Initial Server Paige Initial Deristry Initial Deristry Initial Deristry Iguid Scream Deltat F Initial Pressure Critical Temperature Iguid Scream Vapor Stream New Stream Critical Temperature Critical Temperature Open Stream New Stream Value Start Density for Expansion Avg Approx Stream KdV KdV Start Enth py for Expansion Cpi Islief Device KdV: KdV Start Enth py for Expansion Hs Islief Device KdV:	op 18/ft	Vrhoop	ing Vapor Density:	erating Prassure: Pop psig
Aubilapoint Liquid: Top Tot Totasi Volume: Tot gerating Temperature: Top F: Initial Initial gerating Temperature: SetP PFig Eliquid Mass: Initial Ilowable:Overpressure: OverP Vapor Vapor Vapor onstant Back Pressure: P3 PSig Initial Dersity: Initial Dersity: emperature Incement: Deltat E: Initial Specific Volume: Initial Specific Volume: iquid Stream: Deltat E: Initial Ref Initial Ref iquid Stream: Vapor Start Temp. for Expansion: Start Temp. for Expansion: Start Temp. for Expansion: iquid Stream: Vapor Start Cp for Expansion: Critical Temperature: Critical Temperature: Critical Temperature: igpor Stream: Vapor Start Cp for Expansion: Cp Aveg apStreamID V KdV Start Cp for Expansion: Cp Average Cp: Au Start Ench apy for Expansion: Hit idef Device KdV KdV Start Ench apy for Expansion: Hit idef Device	op 18/ft	Lrhoop	ing Llouid Density	erating Pressure Basis:
persting Temperature: Top F. Initial et Prassure: SetP pig Liquid Mass: Liquid Mass: Itow able:Overpressora: OverP Vapor Vapor Vapor onstant Back Prassure: P3 pig Initial Der sity: Initial Der emperature Increment: DeltaT E Initial Specific Volume: Initial Specific Volume: iquid Stream: Initial Comparison: Start Temp for Expansion: Start Temp for Expansion: Start Temp for Expansion: iquid Stream: Vapor Start Temp for Expansion: Start Temp for Expansion: Critical open Stream New Stream Vapor Start Cp for Expansion: Critical apStreamID V Start Cp for Expansion: Cp apStreamID KdV Start Cp for Expansion: Cp dilef Device KdV: KdV Start Enthalpy for Expansion: Max/val uelter Device KdV: KdU Start Of for Expansion: Max/val uelter Device KdV: KdU Start Cp for Expansion: Hi uelter Device KdV: KdU Start Cp for Expansion: Hi <td>Vol ft3:</td> <td>TotalVol</td> <td>olume:</td> <td>blepoint Liquid;</td>	Vol ft3:	TotalVol	olume:	blepoint Liquid;
SetP psig Liquid Mass: Liquid Mass: Ilowable:Overpressure: OverP Vapor onstant:Back Pressure: P3 psig Initial Der sity: emperature Increment: DeltaT P Initial Specific Volume: Initial Specific Volume: iquid Stream: DeltaT P Initial Relief Temperature: Initial Specific Volume: Initial Specific Volume: iquid Stream: DeltaT P Initial Relief Temperature: Initial Relief Temperature: Calcula iquid Stream: Initial Relief Temperature: Initial Relief Temperature: Initial Relief Temperature: Critical iquid Stream: Vapor Start:Temp. for Expansion: Start: open Stream: Average.Nass: Average.Nass: Average.Nass: apStreamID V Start: Density: Calcula apstream KdV Start: Enthalpy.for Expansion: Cp Density: KdV Start: Enthalpy.for Expansion: Histief Device KdV: utlet Ploy Stream: OutPresizing Maximum.Volumetric Flow: MaxVol utlet Ploy String: StreamName Open Stream Incl	ass 18:	InitialMass	Aass:::::::::::::::::::::::::::::::::::	erating Temperature: Top F
Ilowable:Overpressure: OverP Vapor Vapor Vapor initial Back Pressure: P3 psig Initial Dersity: Initial Dersity: initial Specific Volume: iquid Stream: DeltaT E Initial Specific Volume: Initial Specific Volume: <td>ass 18:</td> <td>LigMass</td> <td>vlass:</td> <td>Pressure: SetP psiz</td>	ass 18:	LigMass	vlass:	Pressure: SetP psiz
onstant:Back Pressure: P3 psig Initial Der sity: Initial Der sity: emperature Increment: DeltaT E Initial Specific Volume: Initial Specific Volume: harmodynamic Pac Kage! ThermoPackage Initial Relief Temperature: Celcula iquid Stream: Initial Relief Temperature: Initial Relief Temperature: Celcula iqStreamID V Start Temp. For Expansion: St Open Stream New Stream Critical Temperature: Critical Temperature: Iappor Stream! New Stream Start: Dens ty for Expansion: Density: Iappor Stream! New Stream Calcula Start: Cp for Expansion: Cpc Dpen Stream! New Stream KdV Start: Dens ty for Expansion: Cpc Ialief Device KdV: KdV KdV Maxerge: Cp is: Average: Cp is: Bilef Device KdU: KdU KdV Start: Enthalpy for Expansion: Hist Iapt Expension: KdU Stop Enthalpy for Expansion: Hist Iapt Expension: KdU Stop Enthalpy for Expansion: Hist Iapt Expension: Kd Kd: F<	ass 18:1	VanorMass	Alass:	wable Overgress ure: OverP
emperature Increment: DeltaT E Initial Specific Volume: Initial Specific Volume: harmodynamic Package ThermoPackage Calcula iquid Stream: Initial Relief Temperature: Initial Relief Temperature: Initial Relief Temperature: iqStreamID V Start Temp for Expansion: Start Temp for Expansion: Start Critical Temperature: Open Stream New Stream Critical Temperature: Critical Temperature: Critical Temperature: //apStreamID V Start Dens ty for Expansion: Critical Temperature: Critical Temperature: //apStreamID V Start Open Stream Average Mass: Average Mass: Average Mass: //apStreamID V Start Open Stream Critical Temperature: Critical Temperature: //apStreamID V KdV Start Open Stream Meximum Verperature: Average Cp //apStreamID V KdV Start Open Stream Maximum Verperature: Critical Temperature: //apStreamID V KdV Start Open Stream Maximum Verperature: Average Cp //apStreamID V KdV KdV Start Open Stream <td>ity 18/ft</td> <td>InitialDensity</td> <td>Den sity:</td> <td>Istant Back Pressure: P3 psiz</td>	ity 18/ft	InitialDensity	Den sity:	Istant Back Pressure: P3 psiz
harmodynamic Package ThermoPackage Cp Calcula iquid Streami iqStreamID Calcula Initial Relief Temperature: Initial Relief Temperature: Initial Relief Temperature: Initial Relief Initial Relief Temperature: Initial Relief Initial R	Vol #3/#	InitialSpecVol	decific Volume:	noerature Increment
iquid Straam: Calcula iquid Straam: Initial Relief Temperature: Initial Relief Temperature: iquid Straam: Start Temp for Expansion: St Open Stream New Stream Critical Temperature: Critical Temperature: Initial Relief Cerce Critical Temperature: Critical Temperature: Critical Temperature: Open Stream New Stream V Start Opens temperature: Opension: Celcula /apStreamID V Start Opens temperature: Critical Temperature: Critical Temperature: Densitys /apStreamID V Start Opens temperature: Celcula AvgN /apStreamID V Start Opens temperature: Celcula Densitys /apStreamID V Start Opens temperature: Celcula Densitys /apStreamID V Start Opens temperature: Celcula Densitys /apStreamID V Start Openstream Moverage Cp AvgN /apStreamID KdV Start Enthalpy for Expansion: Het Itemperature: AvgN /apStreamID KdL KdV Starementic Expansion: Het Itemp			***	rmodvnamic Packaze
Initial Relief Temperature: Initial Relief Temperature: Initial Relief Temperature: Initial Relief Temperature: Start Temp, for Expansion: St Open Stream New Stream Critical Temperature: Critical Temperature: Avgn Critical Temperature: Critical Temperature: Critical Temperature: Avgn Rest: Avgn Avgn Start Temperature: Critical Temperature: Avgn Start Density for Expansion: Density ApStreamID V Start Openston: Cps Open Stream New Stream Cps Cpi Density: KdV Start Openston: Cps Open Stream New Stream Maxinge Cp Cpi Open Stream New Stream Maxinge Cp Cpi Device KdU: KdV Start Enthalpy for Expansion: HS Islief Device KdU: KdL Stop Enthalpy for Expansion: HS Islief Device KdU: Sizing Maximum Volumetric Flow: MaxVol Dutlet Plos Sizing OutPipeSizing Inct Relief Mass Flow: F Kd: StreamName		Calculate		uid Stream;
IngstreamD V Stert Temp. for Expansion:: St Dpen Stream New Stream Critical Pressure:: Critical Temperature: Import Stream New Stream Avgn Import Stream Avgn Start Dens ty for Expansion:: Density Import Stream V Start Dens ty for Expansion:: Density Import Stream V Start Dens ty for Expansion:: Cpt Dpen Stream New Stream Avgn Start Cpt for Expansion:: Cpt Dpen Stream New Stream Avgn Start Cpt: Cpt Dpen Stream New Stream Avgn Start Cpt: Cpt Dpen Stream New Stream Avgn Start Cpt: Cpt Dpen Stream New Stream Maximum Yolumatric Flow: MaxVol Bilief Device KdL: Sizing V MaxVol MaxVol Intel Plpa Sizing: OutPipeSizing Inct Inct Relief Stream Name Open Stream F Kd: Relief Stream Name Open Stream Inct	np (F)	nitialRelTemp	ellefTemperature:	
Open Stream New Stream Critical Pressure: Critical Temperature: appor Stream Critical Temperature: Critical Temperature: Critical Temperature: appor Stream Average Mass: Average Mass: Average Mass: /apStreamID V Start Option Expansion: Density: Open Stream New Stream Cpt Cpt Dpen Stream New Stream Average:Op Average:Op ellief Device KdV: KdV Start: Enthalpy for Expansion: HS ellief Device Kdt: KdL Stop Enthalpy for Expansion: HS bizzle Staing: Sizing V Maximum Volumatric Flow: MaxVol butlet Ploe Sizing OutPipeSizing Incl Time:Increment: Incl Relief Stream Name Open Stream StreamName Open Stream	tT Fiii	StartT	np. for Expansion	StreamID V
Open Stream New Stream Critical Temperature: Critical Temperature: appor Stream: Average Mass: Average Mass: Average Mass: /apStreamID V Start Density for Expansion: Density Spon Stream New Stream Cpt Relief Cpt: Cpt Open Stream New Stream Average Cp Average Cp Average Cp Billef Device XdV: KdV Start Enthalpy for Expansion: Hst Billef Device XdV: KdL Stop Enthalpy for Expansion: Hst Billef Device XdU: KdL Stop Enthalpy for Expansion: Hst Idtate String: Sizing V MaxVol Nutlet Pipe Sizing V Heat locrament: Incl Relief Stream Name Open Stream Filter Filter	es psig	CriticalPres	Pressure:	
appor Stream: Average Mass: Average Mass: Average Mass: /apStreamID V Start: Density: Density: Open Stream New Stream Cpi Relief Cp: Cpi Average Cp: Average Cp: Average Cp: Average Cp: Average Cp: Open Stream New Stream KdV Start: Enthalpy for Expansion: HS Iellief Device XdV: KdU Start: Enthalpy for Expansion: HS Iellief Device XdU: KdL Stop Enthalpy for Expansion: HS Iozzle Sizing: Sizing Maximum Volumetric Flow: MaxVol Nutlet Ploe Sizing: OutPipeSizing Incl Relief Mass.Flux: F Kd: Relief Stream Name Open Stream StreamName Open Stream	np (F)	CriticalTemp	Temperature:	en Stream
/apStreamID V Start: Density: Density: Start: Cp for Expansion: Cp Start: Cp for Expansion: Cp Relief Cp: Cp Average Cp Average Cp ellief Device XdV: KdV KdL Start: Enthalpy: for Expansion: HS ellief Device XdV: KdL Start: Enthalpy: for Expansion: HS ellief Device XdU: KdL Stop Enthalpy: for Expansion: HS Iozzle Sizing: Sizing Maximum Volumetric Flow: MaxVol Nuclet Pipe Sizing: OutPipeSizing Incl Time: Incrament: Incl Relief Mass Flux: F Kd: F Kd: F Relief Stream Name: Open Stream StreamName: Open Stream	ss Ib:	AvgMass	Mass:	bor Stream:
V Start Op for Expansion: Cpd Open Stream New Stream Average Cp Average Cp Average Cp Average Cp Average Cp Average Cp Iellief Device XdV: KdV Start Enthalpy for Expansion: HS Iellief Device XdV: KdL Stop Enthalpy for Expansion: HS Iellief Device XdV: KdL Stop Enthalpy for Expansion: HS Idztle Staing: Sizing Maximum Volumetric Flow: MaxVol Dutlet Pipe Sizing: OutPipeSizing Incl Incl Relief Stream Name Name Open Stream	rt 18/ft	DensityStart	nsity for Expansion:	StreamID
Open Stream New Stream Cp Average Cp: Average Cp: Average Cp: Average Cp: KdV Start Enthalpy for Expansion: Heilef Device KdL: KdL Stop Enthalpy for Expansion: Nextle Sizing: Sizing Maximum Volumetric Flow: OutPipeSizing: OutPipeSizing Incl Relief Mass Flow: F Kd: Kd:	rt Btu/	CpStart	for Expansion:	~
Iellief Device KdV: KdV Start Enthalpy for Expansion: Ht Iellief Device KdL: KdL Stop Enthalpy for Expansion: Ht Idizie String: Sizing Maximum Volumetric Flow: MaxVol Dutlet Ploe Sizing: OutPipeSizing Incl Relief Stream Name: Incl Relief Stream Name: Open Stream	op Btu/	CpStop	×	en Stream
Iellief Device XdV: KdV Start: Enthalpy for Expansion: H Iellief Device XdU: KdL Stop Enthalpy for Expansion: H Iozzle Sizing: Sizing Maximum Volumetric Flow: MaxVol Nutlet Ploe Sizing: OutPipeSizing Incl Relief Mass Flux: F Kd: StreamName Open Stream	Cp Btu/	AvgCp	:Ср::	
ener uevrce xdL: KdL Stop Enthal py for Expansion: H Idzzle Sizing V Maximum Volumatric Flow: MaxVol Utlet Pipe Sizing V Heat Increment: Incl Incl Relief Mass Flux: F Kd: Open Stream Name Open Stream	rt Btu/	HStart	nalpy for Expansion:	Ner Lievice KdV: KdV
Notzle Staing: Sizing MaxVol Nutlet Ploe Staing: OutPipeSizing Incl Nutlet Ploe Staing: OutPipeSizing Incl Relief Mass Flow: F Kd: F Relief Stream Name Open Stream	op Btu/I	HStop	na py for Expansion:	Ref Lievice Koll: Koll
uttet ripe stang: OutPipeSizing Incl Time:Increment: Incl Relief.Mass.Flux: F Kd: F Relief.Stream:Name: StreamName	ne ft3/h	MaxVolume	m volumetric Flow:	Sizing
Relief.Stream.Name Open Stream	at Btu	IncHeat	rement	Let Pipe Sizing
Relief.Stream.Name Open Stream	ne min	IncTime	rement:	
ReliefStreamName Open Stream	x2 10/sec	Flux2	ass Flux:	
Relief.StreamName Open Stream	(d	Kd		
			lame Open Stream	ReliefStream:Name

Equipment Data:

The six fields under Equipment Data are specified on the Overpressure Scenario Form.

Input Data:

The form fields for inputs are blue and organized under the Scenario Input column. The are described below:

Length – Vessel seam-to-seam length for horizontal and vertical orientations. Not required for spheres.

LengthUnits – Units (ft, in or mm) associated with the Length.

Diameter – Vessel diameter generally taken as the outer diameter.

DiameterUnits - Units (ft, in or mm) associated with the Diameter.

Orientation - Vessel orientation (horizontal, vertical or spherical.

Head1Type - Both vessel heads assumed the same (2:1 ellipsoidal, hemispherical or flat).

UserArea – Any wetted area beyond normal geometry calculation to be added such as a boot or piping.

Level – Vessel liquid level for use in determining wetted area.

LevelBasis – Source for input liquid level such as LSHH, LSH, Upper LG Tap.

Height - Elevation above grade of vessel bottom for use only when considering maximum fire height

Adequate Drainage - If yes then 21,000 used in heat equation, if no 34,500 used in heat equation

Insulation F – Insulation factor used to reduce total heat input. 1.0 unless fireproof insulation is present then either 0.3 or calculated per API STD 521.

Include Entire Area – If yes then entire surface area is used for heat input calculation regardless of level (conservative).

Pop – Operating pressure used to quantify initial density and initial relief temperature. Higher value results in higher density and lower initial relief temperature.

Pop Basis – Source of operating pressure such as PSHH, PSH, Operating.

Bubblepoint Liquid – If yes, vapor composition and properties will be quantified based on liquid with PQFlash. If no, vapor stream with components in same order and Top are required to be entered.

Top – Only required if Bubblepoint is false, otherwise calculated. Higher value results in lower density and higher initial relief temperature.

SetP – Set pressure that will be used along with overpressure to determine relief pressure.

OverP – Allowable overpressure typically 21% used to determine relief pressure.

P3 – Constant back pressure when PSV is closed.

DeltaT – Temperature increment to be used for each expansion step used for required relief rate calculation.

ThermoPackage – Thermo package used for properties. VMG (Symmetry) packages or REFPROP 10.0 from NIST

LiquidStreamID – The liquid or supercritical stream initially contained in the vessel. A new stream can be added here. If initially supercritical, level should be 100% and VapStreamID = LiqStreamID. See <u>Stream</u> <u>Definition Form</u>.

VapStreamID – The vapor or supercritical stream initially contained in the vessel. A new stream can be added here. If initially supercritical, level should be 100% and VapStreamID = LiqStreamID. See <u>Stream Definition</u> Form.

Kdv – Manufacturer's certified vapor Kd or 0.975 for API STD 520 default.

Kdl – Manufacturer's certified liquid Kd or 0.65 for API STD 520 default.

Sizing – PSV sizing method: API 520 Vapor or Numerical Integration (recommended when Z <= 0.8).

OutPipeSizing – Outlet pressure drop method: Adiabatic, Omega Method or Numerical Integration.

Calculation Method:

The calculation method for external fire with supercritical expansion is performed in two steps. The first step involves determining the overall heat input and initial relief conditions. The heat input is based on the vaporizing liquid equation that is well established in API STD 521. As indicated above, the heat input may be evaluated based on the starting liquid level assuming the fluid is subcritical at the entered operating conditions or may be evaluated on the total surface area regardless of the liquid level. The wetted area is then calculated based on the input dimensions, level (if applicable) and orientation of the vessel using standard geometric equations. The heat input is subsequently calculated based on the wetted area using the following equations depending on the presence of adequate drainage and firefighting equipment:

Adequate drainage and firefighting equipment:

 $HeatInput = 21,000 \times InsulationF \times WettedArea^{0.82}$

No adequate drainage and firefighting equipment:

 $HeatInput = 34,500 \times InsulationF \times WettedArea^{0.82}$

The initial relief conditions are based on the input operating conditions and stream compositions. If the fluid is identified as a bubblepoint liquid at operating conditions, the liquid stream is set at the bubblepoint and the temperature and vapor stream composition are calculated using the selected thermodynamic package. If the fluid is not identified as a bubblepoint liquid, then it is required to enter the temperature and vapor stream composition. Note that in this case the components for the liquid and vapor stream need to be entered in identical order. The starting liquid and vapor densities are quantified using the selected thermodynamic package and the liquid and vapor volumes are quantified using the input liquid level and standard geometric equations which yields the overall starting vessel mass and density. The composition of the overall supercritical relief stream is then determined by mathematical addition of the liquid and vapor moles for each component divided by the total moles present.

The second calculation step involves successive expansions of the fluid based on the input DeltaT. The StartT, which is the intial temperature at the relief pressure prior to any fluid leaving the equipment, is first calculated by performing a PD Flash using the InitialDensity and P2 (relief pressure). A PT Flash is then performed to StartT + DeltaT to determine a new density and fluid properties. The rate of fluid loss during this expansion is quantified as follows:

AvgMass = (DensityStart + DensityStop)/2 * TotalVol

AvgCp = (Cp Start + CpStop)/2

IncHeat = AvgMass * AvgCp * DeltaT

TimeInc = HeatInc / HeatInput

RequiredRate = (DensityStart - Density End) * TotalVol / TimeInc

VolRate = RequiredRate / ((DensityStart + Density Stop)/2)

The process is repeated for successive increases in temperature by DeltaT to determine the maximum VolRate which represents the maximum required area for the scenario. Note that this is not necessarily the maximum mass flow rate.

Scenario Output Data:

The form fields for scenario-specific outputs are organized under the Scenario Output column. These are described below:

WettedArea – Surface area calculated using level plus UserArea or total surface area plus UserArea.

HeatInput – Calculated total heat input based on WettedArea, F and Adequate Drainage selection.

Vrhoop – Vapor density at input operating conditions

Lrhoop - Liquid density at input operating conditions

TotalVol – Total volume based on input dimensions

InitialMass - Total of vapor and liquid mass quantified based on relative volumes and densities

LiqMass - Total liquid mass based on level and liquid density

VaporMass - Total vapor mass based on level and vapor density

InitialDensity – Overall bulk density prior to any relief/loss of fluid

InitialSpecVol – 1 / InitialDensity

InitialRelTemp – Predicted temperature at which the relief pressure will be achieved and relief initiated

StartT - Starting temperature for maximum volumetric expansion rate which is basis for required rate

CriticalPres - Overall fluid critical pressure

CriticalTemp - Overall fluid critical temperature

AvgMass - Average mass over maximum volumetric expansion temperature increment

DensityStart - Density at Start T of maximum volumetric expansion temperature increment

CpStart – Mass heat capacity at Start T of maximum volumetric expansion temperature increment

CpStop - Mass heat capacity at StopT (T2) of maximum volumetric expansion temperature increment

AvgCp – Average Cp over maximum volumetric expansion temperature increment

HStart - Mass enthalpy at Start T of maximum volumetric expansion temperature increment

HStop - Mass enthalpy at StopT (T2) of maximum volumetric expansion temperature increment

MaxVolume – Maximum volumetric flowrate found from all expansions

IncHeat – Total heat added during StartT to StopT (T2)

IncTime – Time to heat from StartT to StopT (T2)

Flux2 – RequiredRateMass · RequiredArea * 144 / 3600

Kd - Discharge coefficient used to evaluate required area

Scenario Calculation Results:

The form fields for overall scenario results are organized in the Scenario Calculation Results Section. These outputs are typical of most of the scenario calculations and are detailed under Typical Scenario Calculation Results.

QA/QC Benchmarks:

As the calculation of the wetted area relies on simple geometric calculations and the heat input calculation is very straightforward as detailed in the calculation section, the primary benchmark for the external fire with supercritical expansion is the quantification of the initial relief composition and associated overall density followed by calculation of the expansion rate over each temperature increment. These two calculations were benchmarked against a commercial simulation (Symmetry) for a typical Cold Separator NGL liquid in a separator. The initial relief composition, density (18.1 lb/ft³) and temperature (~ 35° F) were found to be nearly identical between Pressio and the simulator. The maximum expansion rate from Pressio was then recreated in the simulator from 215.5° F to 225.5° F to determine the required relief rate of 17,472 lb/hr versus 17,484 lb/hr from Pressio. Finally, the entire calculation was benchmarked against an internal RKR spreadsheet which determined an overall required relief rate of 17,415 lb/hr with similar intermediate results.

External Fire Supercritical Fluid Expansion

V-2000 External Fire

Equipment Data:

Equipment Tag:	V-2000	Туре:	Pressure Vessel
Drawing:	PID-2000	MAWP:	1000 psig
Description:	Low Temperature Separator	MAWT:	-100 F

Scenario Description:

The Low Temperature Separator contains liquid hydrocarbon that could vaporize in the event of an external fire potentially resulting in overpressure. However, the fluid will be supercritical at the relief pressure of 1,210 psig, therefore the required relief rate was based on the expansion rate of the fluid with the normal liquid composition and associated dewpoint vapor at normal operating conditions of 700 psig and -20 F.

Scenario Calculation Results:

Required Rate:	17,483.8	lb/hr	Device Choke Pressure:	605.0	psig
Actual Capacity:	29,250.8	lb/hr	Outlet Temperature:	125.6	F
Required Area:	0.183	in2	Outlet Mass Quality:	1.000	
Actual Area:	0.307	in2	Outlet Density:	0.074	lb/ft3
Relief Pressure:	1210.0	psig	Outlet Ideal Cp/Cv:	1.156	
Relief Temperature:	225.5	F	Outlet Viscosity:	0.010	сР
Relief MW:	31.35		Inlet Non-Recoverble dP:	5.8	psi
Relief Mass Quality:	1.000		Inlet dP % Set:	0.6	% Set
Relief Density:	7.355	lb/ft3	Built-Up Back Pressure:	109.0	psig
Relief SG:	1.081		Built-Up Back P % Set:	10.9	% Set
Relief Z:	0.710		Total Back Pressure:	109.0	psig
Relief Ideal Cp/Cv:	1.139		Total Back P % Set:	10.9	% Set
Relief Viscosity:	0.012				

External Fire Supercritical Fluid Expansion

V-2000 External Fire

2 ft

Equipment Tag:	V-2000	Туре:	Pressure Vessel
Drawing:	PID-2000	MAWP:	1000 psig
Description:	Low Temperature Separator	MAWT:	-100 F

Bottom Elevation: Adequate Drainage

Scenario Input Data:

Heat Input Calculation:

Length:	12 ft
Diameter:	5 ft
Orientation:	Vertical
Head Type:	2:1 Ellipsoidal
Additional Wetted Area:	0 ft2
Level:	50%
Level Basis:	LSHH-2000

Initial Mass and Expansion Rate Calculation:

Operating Pressure:	[700	psig
Operating Pressure B	asis:	PSHH-2000	
Bubblepoint Liquid:	[\checkmark	
Operating Temperatu	re:	-52.5	F
Set Pressure:	[1000	psig
Allowable Overpressu	re:	21.0%	
Constant Back Pressu	re:	0	psig
Temperature Increme	ent:	10	F
Use Thermodynamics	: [✓	
Relief Device KdV:		0.975	
Relief Device KdL:		0.650	
Nozzle Sizing:	API Numer	ical Integration V	apor
Outlet Pipe Sizing:	Numerical	Integration	
Operating Vapor Der	isity:	4.129	lb/ft3
Operating Liquid Der	isity:	32.078	lb/ft3
Total Volume:		268.3	ft3
Initial Mass:		4858	lb
Liquid Mass:		4304	lb

Insulation Factor:	1	
Include Entire Area:	\checkmark	
Scenario Output Data:		
Wetted Area:	242.7	ft2
Heat Input:	3.1158	MMBtu/hr
Vapor Mass:	554	lb
Initial Density:	18.1	lb/ft3
Initial Specific Volume:	0.0552	ft3/lb
Initial Relief Temperature:	35.5	F
Start Temp. for Expansion:	215.5	F
Average Mass:	2014.3	lb
Start Density for Expansion:	7.66	lb/ft3
Start Cp for Expansion:	0.731	Btu/lb/F
Relief Cp:	0.717	Btu/lb/F
Average Cp:	0.724	Btu/lb/F
Start Enthalpy for Expansion:	5941.8	Btu/lb
Stop Enthalpy for Expansion:	6168.9	Btu/lb/F
Maximum Volumetric Flow:	2328.8	ft3/hr
Heat Increment:	14583.3	Btu
Time Increment:	0.28	min
Relief Mass Flux:	3821.6	lb/sec/ft2
Kd:	0.975	

Notes:

External Fire Supercritical Fluid Expansion

V-2000 External Fire

Equipment Data:

Equipment Tag:	V-2000	Туре:	Pressure Vessel
Drawing:	PID-2000	MAWP:	1000 psig
Description:	Low Temperature Separator	MAWT:	-100 F

Relief Stream Composition:

	Low Temp Separator Relief	Low Temp Separator Liquid	Low Temp Separator Gas
Component	Mole Fraction	Mole Fraction	Mole Fraction
methane	0.5684	0.4723	0.9363
ethane	0.1153	0.1352	0.0390
propane	0.1137	0.1405	0.0109
isobutane	0.0372	0.0465	0.0014
butane	0.0548	0.0687	0.0014
isopentane	0.0284	0.0357	0.0003
pentane	0.0215	0.0271	0.0002
hexane	0.0512	0.0645	0.0001
heptane	0.0000	0.0000	0.0000
octane	0.0000	0.0000	0.0000
nonane	0.0000	0.0000	0.0000
decane	0.0000	0.0000	0.0000
carbon dioxide	0.0082	0.0088	0.0057
nitrogen	0.0015	0.0007	0.0047

Initial V-2000 Bubblepoint Liquid

V-2000_Bubblepoint_Liquid T -52.5 [F] P *700.00 [psig] Mass Flow *1000.00 [lb/h] Vapor Mass Density 4.1310 [lb/ft3] Liquid Mass Density 32.0790 [lb/ft3]

Relief Stream from Pop to Prelief (Constant Density)

Maximum Expansion Rate Increment

TotalVol = 268.3 ft3 DensityAvg = (7.6630 + 7.3579)/2 = 7.51 lb/ft3 DeltaMass = (7.6630 - 7.3579) lb/ft3 x 268.3 ft3 = 81.86 lb CpAvg = (0.7315 + 0.7175) = 0.7245 Btu/lb/F AvgVesselMass = 7.51 lb/ft3 x 268.3 ft3 = 2,104.9 lb IncHeat = 2,104.9 lb x 0.7245 Btu/lb/F x 10 F = 14,598 Btu FireHeat = 3,115,800 Btu/hr IncTime = 14,598 Btu / 3,115,800 Btu/hr x 60 min/hr = 0.28 min ExpansionRate = 81.86 lb / (0.28 min / 60 min / hr) = 17,472 lb/hr

External Fire Supercritical Expansion API STD 521 4.4.13.2.4.4

User-Entered Inputs							
P _{relief}	1,210.0	psig					
Patm	14.7	psia					
K _d	0.975						
Q _{fire}	3,116,000	Btu/hr					
Pop	700.0	psig					
T _{op}	-52.5	F					
Vol _v	121.4	ft ³					
Vol _i	121.4	ft ³					
T _{inc}	10.0	F					
	Thermo Inputs						
T _{init}	36.0	F					
	Results						
Volt	242.7	ft ³					
M _v	484.3	lb					
M	3892.8	lb					
Mt	4377.1	lb					
ρ _{init}	18.04	lb/ft ³					
W _{req}	17415.2	lb/hr					
A _{req}	0.192	in ²					
Wact	27893.4	lb/hr					

Temp (F)	Density (lb/ft3)	Enthalpy (Btu/lb)	Cp (Btu/lb/F)	Mass (lb)	Avg Mass (lb)	Avg Cp (Btu/lb/F)	Heat Input (Btu)	Time (Hours)	Delta Mass (lb)	Mass Rate (lb/hr)	Vol Rate (ft3/hr)
36.0	17.926	26.2	0.7181	4,351							
46.0	16.714	34.7	0.7187	4,056	4,204	0.718	30,198	0.0097	294	30,363	1,816.6
56.0	15.668	43.3	0.7194	3,803	3,929	0.719	28,255	0.0091	254	28,002	1,787.3
66.0	14.752	51.8	0.7204	3,580	3,691	0.720	26,574	0.0085	222	26,070	1,767.3
76.0	13.940	60.4	0.7215	3,383	3,482	0.721	25,101	0.0081	197	24,463	1,755.0
86.0	13.212	69.0	0.7229	3,207	3,295	0.722	23,797	0.0076	176	23,110	1,749.1
96.0	12.555	77.6	0.7244	3,047	3,127	0.724	22,629	0.0073	159	21,956	1,748.7
106.0	11.957	86.4	0.7260	2,902	2,975	0.725	21,573	0.0069	145	20,961	1,753.0
116.0	11.410	95.2	0.7277	2,769	2,836	0.727	20,610	0.0066	133	20,096	1,761.3
126.0	10.905	104.1	0.7293	2,647	2,708	0.728	19,726	0.0063	122	19,337	1,773.2
136.0	10.439	113.1	0.7308	2,533	2,590	0.730	18,908	0.0061	113	18,666	1,788.2
146.0	10.005	122.3	0.7321	2,428	2,481	0.731	18,146	0.0058	105	18,069	1,806.0
156.0	9.601	131.5	0.7333	2.330	2.379	0.733	17.433	0.0056	98	17.534	1.826.3
166.0	9,223	140.9	0.7341	2,238	2,284	0.734	16,760	0.0054	92	17.054	1.849.1
176.0	8.869	150.4	0.7346	2,152	2,195	0.734	16,123	0.0052	86	16.623	1.874.4
186.0	8 535	160 1	0 7347	2 072	2 112	0.735	15 516	0.0050	81	16 238	1 902 4
196.0	8 221	169.9	0 7342	1 995	2,033	0.734	14 935	0.0048	76	15,895	1 933 4
206.0	7 925	179.9	0.731	1,933	1 959	0.734	14 376	0.0046	70	15,596	1 968 0
200.0	7.525	189.9	0.7306	1,525	1,555	0.732	13 825	0.0040	69	15,550	2 026 8
226.0	7 339	197.2	0.7560	1,000	1,005	0.732	13,025	0.0042	74	17 415	2 373 0
226.0	7.067	204.3	0.7056	1,701	1,010	0.724	12,433	0.0042	66	16 510	2,375.0
236.0	6 922	204.5	0.7050	1,715	1,740	0.711	11 919	0.0040	50	15,510	2,000.1
240.0	6.600	211.5	0.0500	1,050	1,000	0.602	11,010	0.0036	55	14 072	2,250.0
250.0	6 206	218.2	0.0835	1,002	1,023	0.033	10,238	0.0030	10	14,323	2,201.1
200.0	6.300	223.1	0.0838	1,552	1,577	0.087	10,828	0.0033	43	14,223	2,224.1
276.0	6.209	231.9	0.6795	1,507	1,550	0.662	10,423	0.0033	45	13,364	2,107.0
280.0	6.036	236.7	0.0739	1,405	1,400	0.078	10,008	0.0032	42	12,991	2,132.4
296.0	5.8/5	245.4	0.6733	1,426	1,445	0.675	9,750	0.0031	39	12,443	2,117.9
306.0	5.720	252.1	0.6714	1,590	1,400	0.672	9,400	0.0030	30	11,955	2,064.4
310.0	5.360	238.9	0.6702	1,550	1,373	0.671	9,209	0.0030	34	11,405	2,032.0
326.0	5.450	205.5	0.6696	1,324	1,340	0.670	8,976	0.0029	32	11,023	2,020.5
336.0	5.333	272.2	0.6694	1,294	1,309	0.669	8,765	0.0028	30	10,612	1,990.1
346.0	5.21/	278.9	0.6697	1,266	1,280	0.670	8,571	0.0028	28	10,228	1,960.7
356.0	5.107	285.6	0.6703	1,239	1,253	0.670	8,393	0.0027	27	9,868	1,932.3
366.0	5.003	292.3	0.6712	1,214	1,227	0.6/1	8,229	0.0026	25	9,530	1,904.7
376.0	4.905	299.1	0.6724	1,190	1,202	0.672	8,078	0.0026	24	9,212	1,8/8.1
386.0	4.811	305.8	0.6739	1,168	1,179	0.673	7,937	0.0025	23	8,912	1,852.3
396.0	4./22	312.5	0.6756	1,146	1,157	0.675	7,807	0.0025	22	8,629	1,827.3
406.0	4.637	319.3	0.6775	1,126	1,136	0.677	7,685	0.0025	21	8,362	1,803.1
416.0	4.556	326.1	0.6796	1,106	1,116	0.679	7,571	0.0024	20	8,109	1,779.7
426.0	4.479	332.9	0.6819	1,087	1,096	0.681	7,464	0.0024	19	7,869	1,757.0
436.0	4.404	339.7	0.6843	1,069	1,078	0.683	7,363	0.0024	18	7,641	1,735.0
446.0	4.333	346.6	0.6868	1,052	1,060	0.686	7,269	0.0023	17	7,425	1,713.7
456.0	4.264	353.5	0.6895	1,035	1,043	0.688	7,179	0.0023	17	7,219	1,692.9
466.0	4.198	360.4	0.6923	1,019	1,027	0.691	7,095	0.0023	16	7,023	1,672.8
476.0	4.135	367.3	0.6951	1,004	1,011	0.694	7,015	0.0023	15	6,836	1,653.3
486.0	4.074	374.3	0.6981	989	996	0.697	6,939	0.0022	15	6,658	1,634.3
496.0	4.015	381.3	0.7012	974	982	0.700	6,868	0.0022	14	6,488	1,615.9
506.0	3.958	388.3	0.7043	961	968	0.703	6,799	0.0022	14	6,325	1,597.9
516.0	3.903	395.4	0.7075	947	954	0.706	6,734	0.0022	13	6,169	1,580.5
526.0	3.850	402.5	0.7107	934	941	0.709	6.672	0.0021	13	6.020	1.563.5